Line | Branch | Exec | Source |
---|---|---|---|
1 | // This file is part of INSTINCT, the INS Toolkit for Integrated | ||
2 | // Navigation Concepts and Training by the Institute of Navigation of | ||
3 | // the University of Stuttgart, Germany. | ||
4 | // | ||
5 | // This Source Code Form is subject to the terms of the Mozilla Public | ||
6 | // License, v. 2.0. If a copy of the MPL was not distributed with this | ||
7 | // file, You can obtain one at https://mozilla.org/MPL/2.0/. | ||
8 | |||
9 | #include "IRNSSEphemeris.hpp" | ||
10 | |||
11 | #include "Navigation/Constants.hpp" | ||
12 | #include "Navigation/GNSS/Functions.hpp" | ||
13 | |||
14 | #include "util/Logger.hpp" | ||
15 | |||
16 | namespace NAV | ||
17 | { | ||
18 | |||
19 | ✗ | IRNSSEphemeris::IRNSSEphemeris(const InsTime& toc, const InsTime& toe, | |
20 | const size_t& IODEC, | ||
21 | const std::array<double, 3>& a, | ||
22 | const double& sqrt_A, const double& e, const double& i_0, const double& Omega_0, const double& omega, const double& M_0, | ||
23 | const double& delta_n, const double& Omega_dot, const double& i_dot, const double& Cus, const double& Cuc, | ||
24 | const double& Cis, const double& Cic, const double& Crs, const double& Crc, | ||
25 | const double& svAccuracy, uint8_t svHealth, | ||
26 | ✗ | const double& T_GD) | |
27 | : SatNavData(SatNavData::IRNSSEphemeris, toc), | ||
28 | ✗ | toc(toc), | |
29 | ✗ | toe(toe), | |
30 | ✗ | IODEC(IODEC), | |
31 | ✗ | a(a), | |
32 | ✗ | sqrt_A(sqrt_A), | |
33 | ✗ | e(e), | |
34 | ✗ | i_0(i_0), | |
35 | ✗ | Omega_0(Omega_0), | |
36 | ✗ | omega(omega), | |
37 | ✗ | M_0(M_0), | |
38 | ✗ | delta_n(delta_n), | |
39 | ✗ | Omega_dot(Omega_dot), | |
40 | ✗ | i_dot(i_dot), | |
41 | ✗ | Cus(Cus), | |
42 | ✗ | Cuc(Cuc), | |
43 | ✗ | Cis(Cis), | |
44 | ✗ | Cic(Cic), | |
45 | ✗ | Crs(Crs), | |
46 | ✗ | Crc(Crc), | |
47 | ✗ | svAccuracy(svAccuracy), | |
48 | ✗ | svHealth(svHealth), | |
49 | ✗ | T_GD(T_GD) {} | |
50 | |||
51 | #ifdef TESTING | ||
52 | |||
53 | 2 | IRNSSEphemeris::IRNSSEphemeris(int32_t year, int32_t month, int32_t day, int32_t hour, int32_t minute, double second, double svClockBias, double svClockDrift, double svClockDriftRate, | |
54 | double IODEC, double Crs, double delta_n, double M_0, | ||
55 | double Cuc, double e, double Cus, double sqrt_A, | ||
56 | double Toe, double Cic, double Omega_0, double Cis, | ||
57 | double i_0, double Crc, double omega, double Omega_dot, | ||
58 | double i_dot, double /*spare1*/, double IRNWeek, double /*spare2*/, | ||
59 | double svAccuracy, double svHealth, double T_GD, double /*spare3*/, | ||
60 | 2 | double /*TransmissionTimeOfMessage*/, double /*spare4*/, double /*spare5*/, double /*spare6*/) | |
61 |
2/4✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 2 times.
✗ Branch 5 not taken.
|
2 | : SatNavData(SatNavData::IRNSSEphemeris, InsTime(year, month, day, hour, minute, second, SatelliteSystem(IRNSS).getTimeSystem())), |
62 | 2 | toc(refTime), | |
63 |
2/4✓ Branch 1 taken 2 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 2 times.
✗ Branch 5 not taken.
|
2 | toe(InsTime(0, static_cast<int32_t>(IRNWeek), Toe, SatelliteSystem(IRNSS).getTimeSystem())), |
64 | 2 | IODEC(static_cast<size_t>(IODEC)), | |
65 | 2 | a({ svClockBias, svClockDrift, svClockDriftRate }), | |
66 | 2 | sqrt_A(sqrt_A), | |
67 | 2 | e(e), | |
68 | 2 | i_0(i_0), | |
69 | 2 | Omega_0(Omega_0), | |
70 | 2 | omega(omega), | |
71 | 2 | M_0(M_0), | |
72 | 2 | delta_n(delta_n), | |
73 | 2 | Omega_dot(Omega_dot), | |
74 | 2 | i_dot(i_dot), | |
75 | 2 | Cus(Cus), | |
76 | 2 | Cuc(Cuc), | |
77 | 2 | Cis(Cis), | |
78 | 2 | Cic(Cic), | |
79 | 2 | Crs(Crs), | |
80 | 2 | Crc(Crc), | |
81 | 2 | svAccuracy(svAccuracy), | |
82 | 2 | svHealth(static_cast<uint8_t>(svHealth)), | |
83 |
1/2✓ Branch 2 taken 2 times.
✗ Branch 3 not taken.
|
4 | T_GD(T_GD) |
84 | 2 | {} | |
85 | |||
86 | #endif | ||
87 | |||
88 | 50 | Clock::Corrections IRNSSEphemeris::calcClockCorrections(const InsTime& recvTime, double dist, const Frequency& freq) const | |
89 | { | ||
90 | LOG_DATA("Calc Sat Clock corrections at receiver time {}", recvTime.toGPSweekTow()); | ||
91 | // Earth gravitational constant [m³/s²] | ||
92 | 50 | const auto mu = InsConst::IRNSS::MU; | |
93 | // Relativistic constant F for clock corrections [s/√m] (-2*√µ/c²) | ||
94 | 50 | const auto F = InsConst::IRNSS::F; | |
95 | |||
96 | LOG_DATA(" toe {} (Time of ephemeris)", toe.toGPSweekTow()); | ||
97 | |||
98 | 50 | const auto A = sqrt_A * sqrt_A; // Semi-major axis [m] | |
99 | LOG_DATA(" A {} [m] (Semi-major axis)", A); | ||
100 | 50 | auto n_0 = std::sqrt(mu / std::pow(A, 3)); // Computed mean motion [rad/s] | |
101 | LOG_DATA(" n_0 {} [rad/s] (Computed mean motion)", n_0); | ||
102 | 50 | auto n = n_0 + delta_n; // Corrected mean motion [rad/s] | |
103 | LOG_DATA(" n {} [rad/s] (Corrected mean motion)", n); | ||
104 | |||
105 | // Time at transmission | ||
106 |
2/4✓ Branch 2 taken 50 times.
✗ Branch 3 not taken.
✓ Branch 5 taken 50 times.
✗ Branch 6 not taken.
|
50 | InsTime transTime0 = recvTime - std::chrono::duration<double>(dist / InsConst::C); |
107 | |||
108 | 50 | InsTime transTime = transTime0; | |
109 | LOG_DATA(" Iterating Time at transmission"); | ||
110 | 50 | double dt_sv = 0.0; | |
111 | 50 | double clkDrift = 0.0; | |
112 | |||
113 |
2/2✓ Branch 0 taken 100 times.
✓ Branch 1 taken 50 times.
|
150 | for (size_t i = 0; i < 2; i++) |
114 | { | ||
115 | LOG_DATA(" transTime {} (Time at transmission)", transTime.toGPSweekTow()); | ||
116 | |||
117 | // [s] | ||
118 |
1/2✓ Branch 1 taken 100 times.
✗ Branch 2 not taken.
|
100 | auto t_minus_toc = static_cast<double>((transTime - toc).count()); |
119 | LOG_DATA(" transTime - toc {} [s]", t_minus_toc); | ||
120 | |||
121 | // Time difference from ephemeris reference epoch [s] | ||
122 |
1/2✓ Branch 1 taken 100 times.
✗ Branch 2 not taken.
|
100 | double t_k = static_cast<double>((transTime - toe).count()); |
123 | LOG_DATA(" transTime - toe {} [s] (t_k = Time difference from ephemeris reference epoch)", t_k); | ||
124 | |||
125 | // Mean anomaly [rad] | ||
126 | 100 | auto M_k = M_0 + n * t_k; | |
127 | LOG_DATA(" M_k {} [s] (Mean anomaly)", M_k); | ||
128 | |||
129 | // Eccentric anomaly [rad] | ||
130 | 100 | double E_k = M_k; | |
131 | 100 | double E_k_old = 0.0; | |
132 | |||
133 |
5/6✓ Branch 1 taken 470 times.
✓ Branch 2 taken 100 times.
✓ Branch 3 taken 470 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 470 times.
✓ Branch 6 taken 100 times.
|
570 | for (size_t i = 0; std::abs(E_k - E_k_old) > 1e-13 && i < 10; i++) |
134 | { | ||
135 | 470 | E_k_old = E_k; // Kepler’s equation ( Mk = E_k − e sin E_k ) may be solved for Eccentric anomaly (E_k) by iteration: | |
136 | 470 | E_k = M_k + e * sin(E_k); | |
137 | } | ||
138 | |||
139 | // Relativistic correction term [s] | ||
140 | 100 | double dt_r = F * e * sqrt_A * std::sin(E_k); | |
141 | LOG_DATA(" dt_r {} [s] (Relativistic correction term)", dt_r); | ||
142 | |||
143 | // SV PRN code phase time offset [s] | ||
144 | 100 | dt_sv = a[0] + a[1] * t_minus_toc + a[2] * std::pow(t_minus_toc, 2) + dt_r; | |
145 | |||
146 | // See /cite IRNSS-SIS-ICD-1.1 IRNSS ICD, ch. 6.2.1.5, p.31 | ||
147 |
1/2✓ Branch 2 taken 100 times.
✗ Branch 3 not taken.
|
100 | dt_sv -= ratioFreqSquared(S01, freq, -128, -128) * T_GD; |
148 | |||
149 | LOG_DATA(" dt_sv {} [s] (SV PRN code phase time offset)", dt_sv); | ||
150 | |||
151 | // Groves ch. 9.3.1, eq. 9.78, p. 391 | ||
152 | 100 | clkDrift = a[1] + a[2] / 2.0 * t_minus_toc; | |
153 | |||
154 | // Correct transmit time for the satellite clock bias | ||
155 |
2/4✓ Branch 2 taken 100 times.
✗ Branch 3 not taken.
✓ Branch 5 taken 100 times.
✗ Branch 6 not taken.
|
100 | transTime = transTime0 - std::chrono::duration<double>(dt_sv); |
156 | } | ||
157 | LOG_DATA(" transTime {} (Time at transmission)", transTime.toGPSweekTow()); | ||
158 | |||
159 | 50 | return { .transmitTime = transTime, .bias = dt_sv, .drift = clkDrift }; | |
160 | } | ||
161 | |||
162 | 50 | Orbit::PosVelAccel IRNSSEphemeris::calcSatelliteData(const InsTime& transTime, Orbit::Calc calc) const | |
163 | { | ||
164 |
2/4✓ Branch 1 taken 50 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 50 times.
✗ Branch 5 not taken.
|
50 | Eigen::Vector3d e_pos = Eigen::Vector3d::Zero(); |
165 |
2/4✓ Branch 1 taken 50 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 50 times.
✗ Branch 5 not taken.
|
50 | Eigen::Vector3d e_vel = Eigen::Vector3d::Zero(); |
166 |
2/4✓ Branch 1 taken 50 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 50 times.
✗ Branch 5 not taken.
|
50 | Eigen::Vector3d e_accel = Eigen::Vector3d::Zero(); |
167 | |||
168 | LOG_DATA("Calc Sat Position at transmit time {}", transTime.toGPSweekTow()); | ||
169 | // Earth gravitational constant [m³/s²] (WGS 84 value of the earth's gravitational constant for GPS user) | ||
170 | 50 | const auto mu = InsConst::GPS::MU; | |
171 | // Earth angular velocity [rad/s] (WGS 84 value of the earth's rotation rate) | ||
172 | 50 | const auto Omega_e_dot = InsConst::GPS::omega_ie; | |
173 | |||
174 | LOG_DATA(" toe {} (Time of ephemeris)", toe.toGPSweekTow()); | ||
175 | |||
176 | 50 | const auto A = sqrt_A * sqrt_A; // Semi-major axis [m] | |
177 | LOG_DATA(" A {} [m] (Semi-major axis)", A); | ||
178 | 50 | auto n_0 = std::sqrt(mu / std::pow(A, 3)); // Computed mean motion [rad/s] | |
179 | LOG_DATA(" n_0 {} [rad/s] (Computed mean motion)", n_0); | ||
180 | 50 | auto n = n_0 + delta_n; // Corrected mean motion [rad/s] | |
181 | LOG_DATA(" n {} [rad/s] (Corrected mean motion)", n); | ||
182 | |||
183 | // Eccentric anomaly [rad] | ||
184 | 50 | double E_k = 0.0; | |
185 | |||
186 | // Time difference from ephemeris reference epoch [s] | ||
187 |
1/2✓ Branch 1 taken 50 times.
✗ Branch 2 not taken.
|
50 | double t_k = static_cast<double>((transTime - toe).count()); |
188 | LOG_DATA(" t_k {} [s] (Time difference from ephemeris reference epoch)", t_k); | ||
189 | |||
190 | // Mean anomaly [rad] | ||
191 | 50 | auto M_k = M_0 + n * t_k; | |
192 | LOG_DATA(" M_k {} [s] (Mean anomaly)", M_k); | ||
193 | |||
194 | 50 | E_k = M_k; // Initial Value [rad] | |
195 | 50 | double E_k_old = 0.0; | |
196 | LOG_DATA(" Iterating E_k"); | ||
197 | LOG_DATA(" E_k {} [rad] (Eccentric anomaly)", E_k); | ||
198 |
5/6✓ Branch 1 taken 150 times.
✓ Branch 2 taken 50 times.
✓ Branch 3 taken 150 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 150 times.
✓ Branch 6 taken 50 times.
|
200 | for (size_t i = 0; std::abs(E_k - E_k_old) > 1e-13 && i < 10; i++) |
199 | { | ||
200 | 150 | E_k_old = E_k; // Kepler’s equation ( Mk = E_k − e sin E_k ) may be solved for Eccentric anomaly (E_k) by iteration: | |
201 | 150 | E_k = E_k + (M_k - E_k + e * std::sin(E_k)) / (1 - e * std::cos(E_k)); // – Refined Value, minimum of three iterations, (j=1,2,3) | |
202 | LOG_DATA(" E_k {} [rad] (Eccentric anomaly)", E_k); // – Final Value (radians) | ||
203 | } | ||
204 | |||
205 | // auto v_k = 2.0 * std::atan(std::sqrt((1.0 + e) / (1.0 - e)) * std::tan(E_k / 2.0)); // True Anomaly (unambiguous quadrant) [rad] (GPS ICD algorithm) | ||
206 | // auto v_k = std::atan2(std::sqrt(1 - e * e) * std::sin(E_k) / (1 - e * std::cos(E_k)), (std::cos(E_k) - e) / (1 - e * std::cos(E_k))); // True Anomaly [rad] (GALILEO ICD algorithm) | ||
207 | 50 | auto v_k = std::atan2(std::sqrt(1 - e * e) * std::sin(E_k), (std::cos(E_k) - e)); // True Anomaly [rad] // simplified, since the denominators cancel out | |
208 | LOG_DATA(" v_k {} [rad] (True Anomaly (unambiguous quadrant))", v_k); | ||
209 | 50 | auto Phi_k = v_k + omega; // Argument of Latitude [rad] | |
210 | LOG_DATA(" Phi_k {} [rad] (Argument of Latitude)", Phi_k); | ||
211 | |||
212 | // Second Harmonic Perturbations | ||
213 | 50 | auto delta_u_k = Cus * std::sin(2 * Phi_k) + Cuc * std::cos(2 * Phi_k); // Argument of Latitude Correction [rad] | |
214 | LOG_DATA(" delta_u_k {} [rad] (Argument of Latitude Correction)", delta_u_k); | ||
215 | 50 | auto delta_r_k = Crs * std::sin(2 * Phi_k) + Crc * std::cos(2 * Phi_k); // Radius Correction [m] | |
216 | LOG_DATA(" delta_r_k {} [m] (Radius Correction)", delta_r_k); | ||
217 | 50 | auto delta_i_k = Cis * std::sin(2 * Phi_k) + Cic * std::cos(2 * Phi_k); // Inclination Correction [rad] | |
218 | LOG_DATA(" delta_i_k {} [rad] (Inclination Correction)", delta_i_k); | ||
219 | |||
220 | 50 | auto u_k = Phi_k + delta_u_k; // Corrected Argument of Latitude [rad] | |
221 | LOG_DATA(" u_k {} [rad] (Corrected Argument of Latitude)", u_k); | ||
222 | 50 | auto r_k = A * (1 - e * std::cos(E_k)) + delta_r_k; // Corrected Radius [m] | |
223 | LOG_DATA(" r_k {} [m] (Corrected Radius)", r_k); | ||
224 | 50 | auto i_k = i_0 + delta_i_k + i_dot * t_k; // Corrected Inclination [rad] | |
225 | LOG_DATA(" i_k {} [rad] (Corrected Inclination)", i_k); | ||
226 | |||
227 | 50 | auto x_k_op = r_k * std::cos(u_k); // Position in orbital plane [m] | |
228 | LOG_DATA(" x_k_op {} [m] (Position in orbital plane)", x_k_op); | ||
229 | 50 | auto y_k_op = r_k * std::sin(u_k); // Position in orbital plane [m] | |
230 | LOG_DATA(" y_k_op {} [m] (Position in orbital plane)", y_k_op); | ||
231 | |||
232 | // Corrected longitude of ascending node [rad] | ||
233 |
1/2✓ Branch 2 taken 50 times.
✗ Branch 3 not taken.
|
50 | auto Omega_k = Omega_0 + (Omega_dot - Omega_e_dot) * t_k - Omega_e_dot * static_cast<double>(toe.toGPSweekTow(IRNSST).tow); |
234 | LOG_DATA(" Omega_k {} [rad] (Corrected longitude of ascending node)", Omega_k); | ||
235 | |||
236 | // Earth-fixed x coordinates [m] | ||
237 | 50 | auto x_k = x_k_op * std::cos(Omega_k) - y_k_op * std::cos(i_k) * std::sin(Omega_k); | |
238 | LOG_DATA(" x_k {} [m] (Earth-fixed x coordinates)", x_k); | ||
239 | // Earth-fixed y coordinates [m] | ||
240 | 50 | auto y_k = x_k_op * std::sin(Omega_k) + y_k_op * std::cos(i_k) * std::cos(Omega_k); | |
241 | LOG_DATA(" y_k {} [m] (Earth-fixed y coordinates)", y_k); | ||
242 | // Earth-fixed z coordinates [m] | ||
243 | 50 | auto z_k = y_k_op * std::sin(i_k); | |
244 | LOG_DATA(" z_k {} [m] (Earth-fixed z coordinates)", z_k); | ||
245 | |||
246 |
1/2✓ Branch 1 taken 50 times.
✗ Branch 2 not taken.
|
50 | e_pos = Eigen::Vector3d{ x_k, y_k, z_k }; |
247 | |||
248 |
3/6✓ Branch 1 taken 50 times.
✗ Branch 2 not taken.
✗ Branch 4 not taken.
✓ Branch 5 taken 50 times.
✗ Branch 6 not taken.
✓ Branch 7 taken 50 times.
|
50 | if (calc & Calc_Velocity || calc & Calc_Acceleration) |
249 | { | ||
250 | // Eccentric Anomaly Rate [rad/s] | ||
251 | ✗ | auto E_k_dot = n / (1 - e * std::cos(E_k)); | |
252 | // True Anomaly Rate [rad/s] | ||
253 | ✗ | auto v_k_dot = E_k_dot * std::sqrt(1 - e * e) / (1 - e * std::cos(E_k)); | |
254 | // Corrected Inclination Angle Rate [rad/s] | ||
255 | ✗ | auto i_k_dot = i_dot + 2 * v_k_dot * (Cis * std::cos(2 * Phi_k) - Cic * std::sin(2 * Phi_k)); | |
256 | // Corrected Argument of Latitude Rate [rad/s] | ||
257 | ✗ | auto u_k_dot = v_k_dot + 2 * v_k_dot * (Cus * std::cos(2 * Phi_k) - Cuc * std::sin(2 * Phi_k)); | |
258 | // Corrected Radius Rate [m/s] | ||
259 | ✗ | auto r_k_dot = e * A * E_k_dot * std::sin(E_k) + 2 * v_k_dot * (Crs * std::cos(2 * Phi_k) - Crc * std::sin(2 * Phi_k)); | |
260 | // Longitude of Ascending Node Rate [rad/s] | ||
261 | ✗ | auto Omega_k_dot = Omega_dot - Omega_e_dot; | |
262 | // In-plane x velocity [m/s] | ||
263 | ✗ | auto vx_k_op = r_k_dot * std::cos(u_k) - r_k * u_k_dot * std::sin(u_k); | |
264 | // In-plane y velocity [m/s] | ||
265 | ✗ | auto vy_k_op = r_k_dot * std::sin(u_k) + r_k * u_k_dot * std::cos(u_k); | |
266 | // Earth-Fixed x velocity [m/s] | ||
267 | ✗ | auto vx_k = -x_k_op * Omega_k_dot * std::sin(Omega_k) + vx_k_op * std::cos(Omega_k) - vy_k_op * std::sin(Omega_k) * std::cos(i_k) | |
268 | ✗ | - y_k_op * (Omega_k_dot * std::cos(Omega_k) * std::cos(i_k) - i_k_dot * std::sin(Omega_k) * std::sin(i_k)); | |
269 | // Earth-Fixed y velocity [m/s] | ||
270 | ✗ | auto vy_k = x_k_op * Omega_k_dot * std::cos(Omega_k) + vx_k_op * std::sin(Omega_k) + vy_k_op * std::cos(Omega_k) * std::cos(i_k) | |
271 | ✗ | - y_k_op * (Omega_k_dot * std::sin(Omega_k) * std::cos(i_k) + i_k_dot * std::cos(Omega_k) * std::sin(i_k)); | |
272 | // Earth-Fixed z velocity [m/s] | ||
273 | ✗ | auto vz_k = vy_k_op * std::sin(i_k) + y_k_op * i_k_dot * std::cos(i_k); | |
274 | |||
275 | ✗ | if (calc & Calc_Velocity) | |
276 | { | ||
277 | ✗ | e_vel = Eigen::Vector3d{ vx_k, vy_k, vz_k }; | |
278 | } | ||
279 | |||
280 | ✗ | if (calc & Calc_Acceleration) | |
281 | { | ||
282 | // Oblate Earth acceleration Factor [m/s^2] | ||
283 | ✗ | auto F = -(3.0 / 2.0) * InsConst::GPS::J2 * (mu / std::pow(r_k, 2)) * std::pow(InsConst::GPS::R_E / r_k, 2); | |
284 | // Earth-Fixed x acceleration [m/s^2] | ||
285 | ✗ | auto ax_k = -mu * (x_k / std::pow(r_k, 3)) + F * ((1.0 - 5.0 * std::pow(z_k / r_k, 2)) * (x_k / r_k)) | |
286 | ✗ | + 2 * vy_k * Omega_e_dot + x_k * std::pow(Omega_e_dot, 2); | |
287 | // Earth-Fixed y acceleration [m/s^2] | ||
288 | ✗ | auto ay_k = -mu * (y_k / std::pow(r_k, 3)) + F * ((1.0 - 5.0 * std::pow(z_k / r_k, 2)) * (y_k / r_k)) | |
289 | ✗ | + 2 * vx_k * Omega_e_dot + y_k * std::pow(Omega_e_dot, 2); | |
290 | // Earth-Fixed z acceleration [m/s^2] | ||
291 | ✗ | auto az_k = -mu * (z_k / std::pow(r_k, 3)) + F * ((3.0 - 5.0 * std::pow(z_k / r_k, 2)) * (z_k / r_k)); | |
292 | |||
293 | ✗ | e_accel = Eigen::Vector3d{ ax_k, ay_k, az_k }; | |
294 | } | ||
295 | } | ||
296 | |||
297 | return { .e_pos = e_pos, | ||
298 | .e_vel = e_vel, | ||
299 |
3/6✓ Branch 1 taken 50 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 50 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 50 times.
✗ Branch 8 not taken.
|
100 | .e_accel = e_accel }; |
300 | } | ||
301 | |||
302 | ✗ | bool IRNSSEphemeris::isHealthy() const // TODO Parse Signal Id as a parameter and differentiate depending on the bitset | |
303 | { | ||
304 | ✗ | return svHealth.none(); | |
305 | } | ||
306 | |||
307 | ✗ | double IRNSSEphemeris::calcSatellitePositionVariance() const | |
308 | { | ||
309 | // Getting the index and value again will discretize the URA values | ||
310 | ✗ | return std::pow(gpsUraIdx2Val(gpsUraVal2Idx(svAccuracy)), 2); | |
311 | } | ||
312 | |||
313 | } // namespace NAV | ||
314 |