Line | Branch | Exec | Source |
---|---|---|---|
1 | // This file is part of INSTINCT, the INS Toolkit for Integrated | ||
2 | // Navigation Concepts and Training by the Institute of Navigation of | ||
3 | // the University of Stuttgart, Germany. | ||
4 | // | ||
5 | // This Source Code Form is subject to the terms of the Mozilla Public | ||
6 | // License, v. 2.0. If a copy of the MPL was not distributed with this | ||
7 | // file, You can obtain one at https://mozilla.org/MPL/2.0/. | ||
8 | |||
9 | /// @file InertialIntegrator.hpp | ||
10 | /// @brief Inertial Measurement Integrator | ||
11 | /// @author T. Topp (topp@ins.uni-stuttgart.de) | ||
12 | /// @date 2023-12-09 | ||
13 | |||
14 | #pragma once | ||
15 | |||
16 | #include <functional> | ||
17 | #include <optional> | ||
18 | #include <memory> | ||
19 | |||
20 | #include "NodeData/IMU/ImuPos.hpp" | ||
21 | #include "NodeData/State/PosVelAtt.hpp" | ||
22 | |||
23 | #include "Navigation/Gravity/Gravity.hpp" | ||
24 | #include "Navigation/Math/NumericalIntegration.hpp" | ||
25 | #include "Navigation/Time/InsTime.hpp" | ||
26 | #include "Navigation/INS/Mechanization.hpp" | ||
27 | #include "Navigation/INS/LocalNavFrame/Mechanization.hpp" | ||
28 | #include "Navigation/INS/EcefFrame/Mechanization.hpp" | ||
29 | |||
30 | #include "util/Container/ScrollingBuffer.hpp" | ||
31 | #include "util/Eigen.hpp" | ||
32 | #include "util/Json.hpp" | ||
33 | #include "util/Logger.hpp" | ||
34 | |||
35 | namespace NAV | ||
36 | { | ||
37 | |||
38 | /// @brief Inertial Measurement Integrator | ||
39 | class InertialIntegrator | ||
40 | { | ||
41 | public: | ||
42 | /// Available Integration Algorithms | ||
43 | enum class IntegrationAlgorithm : uint8_t | ||
44 | { | ||
45 | SingleStepRungeKutta1, ///< Runge-Kutta 1st order (explicit) / (Forward) Euler method | ||
46 | SingleStepRungeKutta2, ///< Runge-Kutta 2nd order (explicit) / Explicit midpoint method | ||
47 | SingleStepHeun2, ///< Heun's method (2nd order) (explicit) | ||
48 | SingleStepRungeKutta3, ///< Runge-Kutta 3rd order (explicit) / Simpson's rule | ||
49 | SingleStepHeun3, ///< Heun's method (3nd order) (explicit) | ||
50 | SingleStepRungeKutta4, ///< Runge-Kutta 4th order (explicit) | ||
51 | MultiStepRK3, ///< Multistep Runge-Kutta 3rd order (explicit) / Simpson's rule (taking 2 old epochs into account) | ||
52 | MultiStepRK4, ///< Multistep Runge-Kutta 4th order (explicit) (taking 2 old epochs into account) | ||
53 | COUNT, ///< Amount of available integration algorithms | ||
54 | }; | ||
55 | |||
56 | /// Available Integration Frames | ||
57 | enum class IntegrationFrame : uint8_t | ||
58 | { | ||
59 | ECEF, ///< Earth-Centered Earth-Fixed frame | ||
60 | NED, ///< Local North-East-Down frame | ||
61 | }; | ||
62 | |||
63 | /// Inertial Measurement | ||
64 | struct Measurement | ||
65 | { | ||
66 | bool averagedMeasurement = false; ///< Wether the acceleration is averaged over the last epoch | ||
67 | double dt = 0.0; ///< Time since previous observation in [s] | ||
68 | Eigen::Vector3d p_acceleration; ///< Acceleration in platform frame coordinates in [m/s^2] | ||
69 | Eigen::Vector3d p_angularRate; ///< Angular rate in platform frame coordinates in [rad/s] | ||
70 | }; | ||
71 | |||
72 | /// @brief Inertial state and measurements | ||
73 | template<typename T> | ||
74 | struct GenericState | ||
75 | { | ||
76 | InsTime epoch; ///< Epoch of this state | ||
77 | |||
78 | Eigen::Vector3<T> position; ///< IMU position (e_pos / lla_pos) | ||
79 | Eigen::Vector3<T> velocity; ///< IMU velocity (e_vel / n_vel) | ||
80 | Eigen::Quaternion<T> attitude; ///< IMU attitude (e_Quat_b / n_Quat_b) | ||
81 | |||
82 | Measurement m; ///< Inertial measurement | ||
83 | |||
84 | Eigen::Vector3<T> p_biasAcceleration = Eigen::Vector3<T>::Zero(); ///< Acceleration bias in platform frame coordinates in [m/s^2] | ||
85 | Eigen::Vector3<T> p_biasAngularRate = Eigen::Vector3<T>::Zero(); ///< Angular rate bias in platform frame coordinates in [rad/s] | ||
86 | |||
87 | Eigen::Vector3<T> scaleFactorAccel = Eigen::Vector3<T>::Ones(); ///< Scale factor of the accelerometer [-] | ||
88 | Eigen::Vector3<T> scaleFactorGyro = Eigen::Vector3<T>::Ones(); ///< Scale factor of the gyroscope [-] | ||
89 | |||
90 | Eigen::Quaternion<T> misalignmentAccel = Eigen::Quaternion<T>::Identity(); ///< Misalignment of the accelerometer sensor axes | ||
91 | Eigen::Quaternion<T> misalignmentGyro = Eigen::Quaternion<T>::Identity(); ///< Misalignment of the gyroscope sensor axes | ||
92 | }; | ||
93 | |||
94 | /// Inertial state and measurements | ||
95 | using State = GenericState<double>; | ||
96 | |||
97 | /// @brief Default Constructor | ||
98 |
4/8✓ Branch 2 taken 242 times.
✗ Branch 3 not taken.
✓ Branch 5 taken 242 times.
✗ Branch 6 not taken.
✓ Branch 8 taken 242 times.
✗ Branch 9 not taken.
✓ Branch 11 taken 242 times.
✗ Branch 12 not taken.
|
242 | InertialIntegrator() = default; |
99 | |||
100 | /// @brief Constructor | ||
101 | /// @param integrationFrame Integration frame to lock to | ||
102 | explicit InertialIntegrator(IntegrationFrame integrationFrame); | ||
103 | |||
104 | /// @brief Clears all internal data | ||
105 | void reset(); | ||
106 | |||
107 | /// @brief Checks if an initial position is set | ||
108 | [[nodiscard]] bool hasInitialPosition() const; | ||
109 | |||
110 | /// @brief Sets the initial state | ||
111 | /// @param[in] state State to set | ||
112 | /// @param[in] nameId NameId of the calling node for logging | ||
113 | void setInitialState(const PosVelAtt& state, const char* nameId); | ||
114 | |||
115 | /// @brief Pushes the state to the list of states | ||
116 | /// @param[in] state State to set | ||
117 | /// @param[in] nameId NameId of the calling node for logging | ||
118 | void addState(const PosVelAtt& state, const char* nameId); | ||
119 | |||
120 | /// @brief Sets the sensor biases total values | ||
121 | /// @param[in] p_biasAcceleration Acceleration bias in platform frame coordinates in [m/s^2] | ||
122 | /// @param[in] p_biasAngularRate Angular rate bias in platform frame coordinates in [rad/s] | ||
123 | void setTotalSensorBiases(const Eigen::Vector3d& p_biasAcceleration, const Eigen::Vector3d& p_biasAngularRate); | ||
124 | |||
125 | /// @brief Sets the sensor biases increment | ||
126 | /// @param[in] p_deltaBiasAcceleration Acceleration bias increment in platform frame coordinates in [m/s^2] | ||
127 | /// @param[in] p_deltaBiasAngularRate Angular rate bias increment in platform frame coordinates in [rad/s] | ||
128 | void applySensorBiasesIncrements(const Eigen::Vector3d& p_deltaBiasAcceleration, const Eigen::Vector3d& p_deltaBiasAngularRate); | ||
129 | |||
130 | /// @brief Apply the errors to the latest state | ||
131 | /// @param[in] lla_positionError δ𝐩_n = [δ𝜙 δλ δ𝘩] The position error (latitude, longitude, altitude) in [rad, rad, m] | ||
132 | /// @param[in] n_velocityError δ𝐯_n The velocity error in n frame coordinates in [m/s] | ||
133 | /// @param[in] n_attitudeError_b δ𝛙_nb_n The attitude error in n frame coordinates in [rad] | ||
134 | void applyStateErrors_n(const Eigen::Vector3d& lla_positionError, const Eigen::Vector3d& n_velocityError, const Eigen::Vector3d& n_attitudeError_b); | ||
135 | |||
136 | /// @brief Apply the errors to the latest state | ||
137 | /// @param[in] e_positionError δr_e The position error in e frame coordinates in [m] | ||
138 | /// @param[in] e_velocityError δ𝐯_e The velocity error in e frame coordinates in [m/s] | ||
139 | /// @param[in] e_attitudeError_b δ𝛙_eb_e The attitude error in e frame coordinates in [rad] | ||
140 | void applyStateErrors_e(const Eigen::Vector3d& e_positionError, const Eigen::Vector3d& e_velocityError, const Eigen::Vector3d& e_attitudeError_b); | ||
141 | |||
142 | /// Get the latest state if it exists | ||
143 | [[nodiscard]] std::optional<std::reference_wrapper<const State>> getLatestState() const; | ||
144 | |||
145 | /// @brief Return the last acceleration bias in platform frame coordinates in [m/s^2] | ||
146 | [[nodiscard]] const Eigen::Vector3d& p_getLastAccelerationBias() const; | ||
147 | |||
148 | /// @brief Return the last angular rate bias in platform frame coordinates in [rad/s] | ||
149 | [[nodiscard]] const Eigen::Vector3d& p_getLastAngularRateBias() const; | ||
150 | |||
151 | /// @brief Returns the selected integration frame | ||
152 | [[nodiscard]] IntegrationFrame getIntegrationFrame() const; | ||
153 | |||
154 | /// @brief Returns the selected compensation models | ||
155 | [[nodiscard]] const PosVelAttDerivativeConstants& getConstants() const; | ||
156 | |||
157 | /// Wether the measurements are accumulated values over the last epoch. (always true when using delta measurements, so GUI has no effect) | ||
158 | [[nodiscard]] bool areAccelerationsAveragedMeasurements() const; | ||
159 | |||
160 | /// Calculate the current acceleration, if measurements area available | ||
161 | [[nodiscard]] std::optional<Eigen::Vector3d> p_calcCurrentAcceleration() const; | ||
162 | |||
163 | /// Calculate the current angular rate, if measurements area available | ||
164 | [[nodiscard]] std::optional<Eigen::Vector3d> p_calcCurrentAngularRate() const; | ||
165 | |||
166 | /// @brief Calculates the inertial navigation solution | ||
167 | /// @param[in] obsTime Time of the observation | ||
168 | /// @param[in] p_acceleration Acceleration in platform frame coordinates in [m/s^2] | ||
169 | /// @param[in] p_angularRate Angular rate in platform frame coordinates in [rad/s] | ||
170 | /// @param[in] imuPos IMU platform frame position with respect to body frame | ||
171 | /// @param[in] nameId NameId of the calling node for logging | ||
172 | /// @return The new state at the observation time | ||
173 | std::shared_ptr<PosVelAtt> calcInertialSolution(const InsTime& obsTime, | ||
174 | const Eigen::Vector3d& p_acceleration, const Eigen::Vector3d& p_angularRate, | ||
175 | const ImuPos& imuPos, const char* nameId); | ||
176 | |||
177 | /// @brief Calculates the inertial navigation solution | ||
178 | /// @param[in] obsTime Time of the observation | ||
179 | /// @param[in] deltaTime Delta time over which the deltaVelocity and deltaTheta were measured in [s] | ||
180 | /// @param[in] p_deltaVelocity Integrated acceleration in platform frame coordinates in [m/s] | ||
181 | /// @param[in] p_deltaTheta Integrated angular rate in platform frame coordinates in [rad] | ||
182 | /// @param[in] imuPos IMU platform frame position with respect to body frame | ||
183 | /// @param[in] nameId NameId of the calling node for logging | ||
184 | /// @return The new state at the observation time | ||
185 | std::shared_ptr<PosVelAtt> calcInertialSolutionDelta(const InsTime& obsTime, double deltaTime, | ||
186 | const Eigen::Vector3d& p_deltaVelocity, const Eigen::Vector3d& p_deltaTheta, | ||
187 | const ImuPos& imuPos, const char* nameId); | ||
188 | |||
189 | // Forward declaring external function | ||
190 | friend const char* to_string(InertialIntegrator::IntegrationAlgorithm algorithm); | ||
191 | friend const char* to_string(InertialIntegrator::IntegrationFrame frame); | ||
192 | |||
193 | /// @brief Calculates the inertial solution going from state__t1 to state__t0 given that measurements are available for both states | ||
194 | /// @param imuPos IMU mounting position connecting the platform to the body frame | ||
195 | /// @param state__t0 State at the epoch to calculate (measurements only) | ||
196 | /// @param state__t1 State at the previous epoch (state + measurements) | ||
197 | /// @param nameId NameId of the calling node for logging | ||
198 | /// @return Position, velocity and attitude from the integration step | ||
199 | template<typename T> | ||
200 | 49997 | [[nodiscard]] Eigen::Vector<T, 10> calcInertialSolution(const ImuPos& imuPos, | |
201 | const GenericState<T>& state__t0, | ||
202 | const GenericState<T>& state__t1, | ||
203 | [[maybe_unused]] const char* nameId) const | ||
204 | { | ||
205 | // #if LOG_LEVEL <= LOG_LEVEL_DATA | ||
206 | // auto printState = [](const GenericState<T>& state, const char* t, const char* nameId) { | ||
207 | // LOG_DATA("{} [{}]:\n" | ||
208 | // " - {}:\n" | ||
209 | // " Position [{}, {}, {}], Velocity [{}, {}, {}], Attitude [{}x, {}y, {}z, {}w]\n" | ||
210 | // " dt = {:.5f}, p_accel [{}, {}, {}], p_angRate [{}, {}, {}]\n" | ||
211 | // " p_biasAccel [{}, {}, {}], p_biasAngRate [{}, {}, {}]\n" | ||
212 | // " p_scaleFacAccel [{}, {}, {}], p_scaleFacAngRate [{}, {}, {}]\n" | ||
213 | // " p_misAlignAccel [{}x, {}y, {}z, {}w], p_misAlignAngRate [{}x, {}y, {}z, {}w]", | ||
214 | // nameId, t, state.epoch.toYMDHMS(GPST), | ||
215 | // state.position(0), state.position(1), state.position(2), | ||
216 | // state.velocity(0), state.velocity(1), state.velocity(2), | ||
217 | // state.attitude.x(), state.attitude.y(), state.attitude.z(), state.attitude.w(), | ||
218 | // state.m.dt, state.m.p_acceleration(0), state.m.p_acceleration(1), state.m.p_acceleration(2), | ||
219 | // state.m.p_angularRate(0), state.m.p_angularRate(1), state.m.p_angularRate(2), | ||
220 | // state.p_biasAcceleration(0), state.p_biasAcceleration(1), state.p_biasAcceleration(2), | ||
221 | // state.p_biasAngularRate(0), state.p_biasAngularRate(1), state.p_biasAngularRate(2), | ||
222 | // state.scaleFactorAccel(0), state.scaleFactorAccel(1), state.scaleFactorAccel(2), | ||
223 | // state.scaleFactorGyro(0), state.scaleFactorGyro(1), state.scaleFactorGyro(2), | ||
224 | // state.misalignmentAccel.x(), state.misalignmentAccel.y(), state.misalignmentAccel.z(), state.misalignmentAccel.w(), | ||
225 | // state.misalignmentGyro.x(), state.misalignmentGyro.y(), state.misalignmentGyro.z(), state.misalignmentGyro.w()); | ||
226 | // }; | ||
227 | // LOG_DATA("{}: Frame {}, Algorithm {}", nameId, to_string(_integrationFrame), to_string(_integrationAlgorithm)); | ||
228 | // printState(state__t0, "t0", nameId); | ||
229 | // printState(state__t1, "t1", nameId); | ||
230 | // #endif | ||
231 | |||
232 |
1/2✓ Branch 1 taken 49997 times.
✗ Branch 2 not taken.
|
49997 | Eigen::Vector<T, 10> y; |
233 | // 0 1 2 3 4 5 6 7 8 9 | ||
234 | // NED [ 𝜙, λ, h, v_N, v_E, v_D, n_q_bx, n_q_by, n_q_bz, n_q_bw]^T | ||
235 | // ECEF [ x, y, z, v_x, v_y, v_z, e_q_bx, e_q_by, e_q_bz, e_q_bw]^T | ||
236 |
2/4✓ Branch 1 taken 49997 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 49997 times.
✗ Branch 5 not taken.
|
49997 | y.template segment<3>(0) = state__t1.position; |
237 |
2/4✓ Branch 1 taken 49997 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 49997 times.
✗ Branch 5 not taken.
|
49997 | y.template segment<3>(3) = state__t1.velocity; |
238 |
2/4✓ Branch 2 taken 49997 times.
✗ Branch 3 not taken.
✓ Branch 5 taken 49997 times.
✗ Branch 6 not taken.
|
49997 | y.template segment<4>(6) = state__t1.attitude.coeffs(); |
239 | |||
240 | 99994 | auto p_accel = [](const GenericState<T>& state) -> Eigen::Vector3<T> { | |
241 |
4/8✓ Branch 2 taken 99994 times.
✗ Branch 3 not taken.
✓ Branch 5 taken 99994 times.
✗ Branch 6 not taken.
✓ Branch 8 taken 99994 times.
✗ Branch 9 not taken.
✓ Branch 11 taken 99994 times.
✗ Branch 12 not taken.
|
99994 | return (state.misalignmentAccel * state.m.p_acceleration.template cast<T>()).cwiseProduct(state.scaleFactorAccel) + state.p_biasAcceleration; |
242 | }; | ||
243 | 99994 | auto p_gyro = [](const GenericState<T>& state) -> Eigen::Vector3<T> { | |
244 |
4/8✓ Branch 2 taken 99994 times.
✗ Branch 3 not taken.
✓ Branch 5 taken 99994 times.
✗ Branch 6 not taken.
✓ Branch 8 taken 99994 times.
✗ Branch 9 not taken.
✓ Branch 11 taken 99994 times.
✗ Branch 12 not taken.
|
99994 | return (state.misalignmentGyro * state.m.p_angularRate.template cast<T>()).cwiseProduct(state.scaleFactorGyro) + state.p_biasAngularRate; |
245 | }; | ||
246 | |||
247 | // LOG_DATA("{}: imuPos.b_quat_p() [{}]", nameId, imuPos.b_quat_p()); | ||
248 |
2/4✓ Branch 1 taken 49997 times.
✗ Branch 2 not taken.
✓ Branch 6 taken 49997 times.
✗ Branch 7 not taken.
|
49997 | Eigen::Vector3<T> b_accel__t0 = imuPos.b_quat_p().cast<T>() * p_accel(state__t0); |
249 |
2/4✓ Branch 1 taken 49997 times.
✗ Branch 2 not taken.
✓ Branch 6 taken 49997 times.
✗ Branch 7 not taken.
|
49997 | Eigen::Vector3<T> b_accel__t1 = imuPos.b_quat_p().cast<T>() * p_accel(state__t1); |
250 |
2/4✓ Branch 1 taken 49997 times.
✗ Branch 2 not taken.
✓ Branch 6 taken 49997 times.
✗ Branch 7 not taken.
|
49997 | Eigen::Vector3<T> b_gyro__t0 = imuPos.b_quat_p().cast<T>() * p_gyro(state__t0); |
251 |
2/4✓ Branch 1 taken 49997 times.
✗ Branch 2 not taken.
✓ Branch 6 taken 49997 times.
✗ Branch 7 not taken.
|
49997 | Eigen::Vector3<T> b_gyro__t1 = imuPos.b_quat_p().cast<T>() * p_gyro(state__t1); |
252 | // LOG_DATA("{}: b_accel__t0 [{}, {}, {}], b_accel__t1 [{}, {}, {}]", nameId, b_accel__t0(0), b_accel__t0(1), b_accel__t0(2), b_accel__t1(0), b_accel__t1(1), b_accel__t1(2)); | ||
253 | // LOG_DATA("{}: b_gyro__t0 [{}, {}, {}], b_gyro__t1 [{}, {}, {}]", nameId, b_gyro__t0(0), b_gyro__t0(1), b_gyro__t0(2), b_gyro__t1(0), b_gyro__t1(1), b_gyro__t1(2)); | ||
254 | |||
255 | // LOG_DATA("{}: integrationAlgorithm = {}", nameId, to_string(_integrationAlgorithm)); | ||
256 |
1/10✗ Branch 0 not taken.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 49997 times.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
✗ Branch 6 not taken.
✗ Branch 7 not taken.
✗ Branch 8 not taken.
✗ Branch 9 not taken.
|
49997 | switch (_integrationAlgorithm) |
257 | { | ||
258 | ✗ | case IntegrationAlgorithm::SingleStepRungeKutta1: | |
259 | { | ||
260 | ✗ | std::array<Eigen::Vector<T, 6>, 1> z; | |
261 | ✗ | if (state__t0.m.averagedMeasurement) { z[0] << b_accel__t0, b_gyro__t0; } | |
262 | ✗ | else { z[0] << b_accel__t1, b_gyro__t1; } | |
263 | // LOG_DATA("{}: z[0] = {}, {}, {}, {}, {}, {}", nameId, z[0](0), z[0](1), z[0](2), z[0](3), z[0](4), z[0](5)); | ||
264 | |||
265 | ✗ | switch (_integrationFrame) | |
266 | { | ||
267 | ✗ | case IntegrationFrame::NED: | |
268 | ✗ | y = RungeKutta1(y, z, state__t0.m.dt, n_calcPosVelAttDerivative<T>, _posVelAttDerivativeConstants); | |
269 | ✗ | break; | |
270 | ✗ | case IntegrationFrame::ECEF: | |
271 | ✗ | y = RungeKutta1(y, z, state__t0.m.dt, e_calcPosVelAttDerivative<T>, _posVelAttDerivativeConstants); | |
272 | ✗ | break; | |
273 | } | ||
274 | ✗ | break; | |
275 | } | ||
276 | ✗ | case IntegrationAlgorithm::SingleStepRungeKutta2: | |
277 | { | ||
278 | ✗ | std::array<Eigen::Vector<T, 6>, 2> z; | |
279 | ✗ | if (state__t0.m.averagedMeasurement) | |
280 | { | ||
281 | ✗ | z[0] << b_accel__t0, b_gyro__t0; | |
282 | ✗ | z[1] << b_accel__t0, b_gyro__t0; | |
283 | } | ||
284 | else | ||
285 | { | ||
286 | ✗ | z[0] << b_accel__t1, b_gyro__t1; | |
287 | ✗ | z[1] << math::lerp(b_accel__t1, b_accel__t0, 0.5), math::lerp(b_gyro__t1, b_gyro__t0, 0.5); | |
288 | } | ||
289 | // LOG_DATA("{}: z[0] = {}, {}, {}, {}, {}, {}", nameId, z[0](0), z[0](1), z[0](2), z[0](3), z[0](4), z[0](5)); | ||
290 | // LOG_DATA("{}: z[1] = {}, {}, {}, {}, {}, {}", nameId, z[1](0), z[1](1), z[1](2), z[1](3), z[1](4), z[1](5)); | ||
291 | ✗ | switch (_integrationFrame) | |
292 | { | ||
293 | ✗ | case IntegrationFrame::NED: | |
294 | ✗ | y = RungeKutta2(y, z, state__t0.m.dt, n_calcPosVelAttDerivative<T>, _posVelAttDerivativeConstants); | |
295 | ✗ | break; | |
296 | ✗ | case IntegrationFrame::ECEF: | |
297 | ✗ | y = RungeKutta2(y, z, state__t0.m.dt, e_calcPosVelAttDerivative<T>, _posVelAttDerivativeConstants); | |
298 | ✗ | break; | |
299 | } | ||
300 | ✗ | break; | |
301 | } | ||
302 | ✗ | case IntegrationAlgorithm::SingleStepHeun2: | |
303 | { | ||
304 | ✗ | std::array<Eigen::Vector<T, 6>, 2> z; | |
305 | ✗ | if (state__t0.m.averagedMeasurement) | |
306 | { | ||
307 | ✗ | z[0] << b_accel__t0, b_gyro__t0; | |
308 | ✗ | z[1] << b_accel__t0, b_gyro__t0; | |
309 | } | ||
310 | else | ||
311 | { | ||
312 | ✗ | z[0] << b_accel__t1, b_gyro__t1; | |
313 | ✗ | z[1] << b_accel__t0, b_gyro__t0; | |
314 | } | ||
315 | // LOG_DATA("{}: z[0] = {}, {}, {}, {}, {}, {}", nameId, z[0](0), z[0](1), z[0](2), z[0](3), z[0](4), z[0](5)); | ||
316 | // LOG_DATA("{}: z[1] = {}, {}, {}, {}, {}, {}", nameId, z[1](0), z[1](1), z[1](2), z[1](3), z[1](4), z[1](5)); | ||
317 | ✗ | switch (_integrationFrame) | |
318 | { | ||
319 | ✗ | case IntegrationFrame::NED: | |
320 | ✗ | y = Heun2(y, z, state__t0.m.dt, n_calcPosVelAttDerivative<T>, _posVelAttDerivativeConstants); | |
321 | ✗ | break; | |
322 | ✗ | case IntegrationFrame::ECEF: | |
323 | ✗ | y = Heun2(y, z, state__t0.m.dt, e_calcPosVelAttDerivative<T>, _posVelAttDerivativeConstants); | |
324 | ✗ | break; | |
325 | } | ||
326 | ✗ | break; | |
327 | } | ||
328 | 49997 | case IntegrationAlgorithm::SingleStepRungeKutta3: | |
329 | { | ||
330 |
1/2✓ Branch 1 taken 49997 times.
✗ Branch 2 not taken.
|
49997 | std::array<Eigen::Vector<T, 6>, 3> z; |
331 |
1/2✓ Branch 0 taken 49997 times.
✗ Branch 1 not taken.
|
49997 | if (state__t0.m.averagedMeasurement) |
332 | { | ||
333 |
2/4✓ Branch 2 taken 49997 times.
✗ Branch 3 not taken.
✓ Branch 5 taken 49997 times.
✗ Branch 6 not taken.
|
49997 | z[0] << b_accel__t0, b_gyro__t0; |
334 |
2/4✓ Branch 2 taken 49997 times.
✗ Branch 3 not taken.
✓ Branch 5 taken 49997 times.
✗ Branch 6 not taken.
|
49997 | z[1] << b_accel__t0, b_gyro__t0; |
335 |
2/4✓ Branch 2 taken 49997 times.
✗ Branch 3 not taken.
✓ Branch 5 taken 49997 times.
✗ Branch 6 not taken.
|
49997 | z[2] << b_accel__t0, b_gyro__t0; |
336 | } | ||
337 | else | ||
338 | { | ||
339 | ✗ | z[0] << b_accel__t1, b_gyro__t1; | |
340 | ✗ | z[1] << math::lerp(b_accel__t1, b_accel__t0, 0.5), math::lerp(b_gyro__t1, b_gyro__t0, 0.5); | |
341 | ✗ | z[2] << b_accel__t0, b_gyro__t0; | |
342 | } | ||
343 | // LOG_DATA("{}: z[0] = {}, {}, {}, {}, {}, {}", nameId, z[0](0), z[0](1), z[0](2), z[0](3), z[0](4), z[0](5)); | ||
344 | // LOG_DATA("{}: z[1] = {}, {}, {}, {}, {}, {}", nameId, z[1](0), z[1](1), z[1](2), z[1](3), z[1](4), z[1](5)); | ||
345 | // LOG_DATA("{}: z[2] = {}, {}, {}, {}, {}, {}", nameId, z[2](0), z[2](1), z[2](2), z[2](3), z[2](4), z[2](5)); | ||
346 |
2/3✓ Branch 0 taken 37109 times.
✓ Branch 1 taken 12888 times.
✗ Branch 2 not taken.
|
49997 | switch (_integrationFrame) |
347 | { | ||
348 | 37109 | case IntegrationFrame::NED: | |
349 |
1/2✓ Branch 1 taken 37109 times.
✗ Branch 2 not taken.
|
37109 | y = RungeKutta3(y, z, state__t0.m.dt, n_calcPosVelAttDerivative<T>, _posVelAttDerivativeConstants); |
350 | 37109 | break; | |
351 | 12888 | case IntegrationFrame::ECEF: | |
352 |
1/2✓ Branch 1 taken 12888 times.
✗ Branch 2 not taken.
|
12888 | y = RungeKutta3(y, z, state__t0.m.dt, e_calcPosVelAttDerivative<T>, _posVelAttDerivativeConstants); |
353 | 12888 | break; | |
354 | } | ||
355 | 49997 | break; | |
356 | } | ||
357 | ✗ | case IntegrationAlgorithm::SingleStepHeun3: | |
358 | { | ||
359 | ✗ | std::array<Eigen::Vector<T, 6>, 3> z; | |
360 | ✗ | if (state__t0.m.averagedMeasurement) | |
361 | { | ||
362 | ✗ | z[0] << b_accel__t0, b_gyro__t0; | |
363 | ✗ | z[1] << b_accel__t0, b_gyro__t0; | |
364 | ✗ | z[2] << b_accel__t0, b_gyro__t0; | |
365 | } | ||
366 | else | ||
367 | { | ||
368 | ✗ | z[0] << b_accel__t1, b_gyro__t1; | |
369 | ✗ | z[1] << math::lerp(b_accel__t1, b_accel__t0, 1.0 / 3.0), math::lerp(b_gyro__t1, b_gyro__t0, 1.0 / 3.0); | |
370 | ✗ | z[2] << math::lerp(b_accel__t1, b_accel__t0, 2.0 / 3.0), math::lerp(b_gyro__t1, b_gyro__t0, 2.0 / 3.0); | |
371 | } | ||
372 | // LOG_DATA("{}: z[0] = {}, {}, {}, {}, {}, {}", nameId, z[0](0), z[0](1), z[0](2), z[0](3), z[0](4), z[0](5)); | ||
373 | // LOG_DATA("{}: z[1] = {}, {}, {}, {}, {}, {}", nameId, z[1](0), z[1](1), z[1](2), z[1](3), z[1](4), z[1](5)); | ||
374 | // LOG_DATA("{}: z[2] = {}, {}, {}, {}, {}, {}", nameId, z[2](0), z[2](1), z[2](2), z[2](3), z[2](4), z[2](5)); | ||
375 | ✗ | switch (_integrationFrame) | |
376 | { | ||
377 | ✗ | case IntegrationFrame::NED: | |
378 | ✗ | y = RungeKutta3(y, z, state__t0.m.dt, n_calcPosVelAttDerivative<T>, _posVelAttDerivativeConstants); | |
379 | ✗ | break; | |
380 | ✗ | case IntegrationFrame::ECEF: | |
381 | ✗ | y = RungeKutta3(y, z, state__t0.m.dt, e_calcPosVelAttDerivative<T>, _posVelAttDerivativeConstants); | |
382 | ✗ | break; | |
383 | } | ||
384 | ✗ | break; | |
385 | } | ||
386 | ✗ | case IntegrationAlgorithm::SingleStepRungeKutta4: | |
387 | { | ||
388 | ✗ | std::array<Eigen::Vector<T, 6>, 4> z; | |
389 | ✗ | if (state__t0.m.averagedMeasurement) | |
390 | { | ||
391 | ✗ | z[0] << b_accel__t0, b_gyro__t0; | |
392 | ✗ | z[1] << b_accel__t0, b_gyro__t0; | |
393 | ✗ | z[2] << b_accel__t0, b_gyro__t0; | |
394 | ✗ | z[3] << b_accel__t0, b_gyro__t0; | |
395 | } | ||
396 | else | ||
397 | { | ||
398 | ✗ | z[0] << b_accel__t1, b_gyro__t1; | |
399 | ✗ | z[1] << math::lerp(b_accel__t1, b_accel__t0, 0.5), math::lerp(b_gyro__t1, b_gyro__t0, 0.5); | |
400 | ✗ | z[2] << math::lerp(b_accel__t1, b_accel__t0, 0.5), math::lerp(b_gyro__t1, b_gyro__t0, 0.5); | |
401 | ✗ | z[3] << b_accel__t0, b_gyro__t0; | |
402 | } | ||
403 | // LOG_DATA("{}: z[0] = {}, {}, {}, {}, {}, {}", nameId, z[0](0), z[0](1), z[0](2), z[0](3), z[0](4), z[0](5)); | ||
404 | // LOG_DATA("{}: z[1] = {}, {}, {}, {}, {}, {}", nameId, z[1](0), z[1](1), z[1](2), z[1](3), z[1](4), z[1](5)); | ||
405 | // LOG_DATA("{}: z[2] = {}, {}, {}, {}, {}, {}", nameId, z[2](0), z[2](1), z[2](2), z[2](3), z[2](4), z[2](5)); | ||
406 | // LOG_DATA("{}: z[3] = {}, {}, {}, {}, {}, {}", nameId, z[3](0), z[3](1), z[3](2), z[3](3), z[3](4), z[3](5)); | ||
407 | ✗ | switch (_integrationFrame) | |
408 | { | ||
409 | ✗ | case IntegrationFrame::NED: | |
410 | ✗ | y = RungeKutta4(y, z, state__t0.m.dt, n_calcPosVelAttDerivative<T>, _posVelAttDerivativeConstants); | |
411 | ✗ | break; | |
412 | ✗ | case IntegrationFrame::ECEF: | |
413 | ✗ | y = RungeKutta4(y, z, state__t0.m.dt, e_calcPosVelAttDerivative<T>, _posVelAttDerivativeConstants); | |
414 | ✗ | break; | |
415 | } | ||
416 | ✗ | break; | |
417 | } | ||
418 | ✗ | case IntegrationAlgorithm::MultiStepRK3: | |
419 | { | ||
420 | ✗ | LOG_CRITICAL("Not implemented yet"); | |
421 | break; | ||
422 | } | ||
423 | ✗ | case IntegrationAlgorithm::MultiStepRK4: | |
424 | { | ||
425 | ✗ | LOG_CRITICAL("Not implemented yet"); | |
426 | break; | ||
427 | } | ||
428 | ✗ | case IntegrationAlgorithm::COUNT: | |
429 | { | ||
430 | ✗ | LOG_CRITICAL("Unreachable"); | |
431 | break; | ||
432 | } | ||
433 | } | ||
434 | |||
435 |
5/10✓ Branch 1 taken 49997 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 49997 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 49997 times.
✗ Branch 8 not taken.
✓ Branch 11 taken 49997 times.
✗ Branch 12 not taken.
✓ Branch 14 taken 49997 times.
✗ Branch 15 not taken.
|
49997 | y.template segment<4>(6) = Eigen::Quaternion<T>(y.template segment<4>(6)).normalized().coeffs(); |
436 | |||
437 | 99994 | return y; | |
438 | } | ||
439 | |||
440 | private: | ||
441 | /// @brief Adds the measurement to the tracking buffer | ||
442 | /// @param[in] epoch Epoch of the measurement | ||
443 | /// @param[in] dt Time between observation and last state in [s] | ||
444 | /// @param[in] p_acceleration Acceleration in platform frame coordinates in [m/s^2] | ||
445 | /// @param[in] p_angularRate Angular rate in platform frame coordinates in [rad/s] | ||
446 | /// @param[in] nameId NameId of the calling node for logging | ||
447 | void addMeasurement(const InsTime& epoch, double dt, | ||
448 | const Eigen::Vector3d& p_acceleration, const Eigen::Vector3d& p_angularRate, const char* nameId); | ||
449 | |||
450 | /// @brief Adds the measurement to the tracking buffer | ||
451 | /// @param[in] epoch Epoch of the measurement | ||
452 | /// @param[in] dt Time between observation and last state in [s] | ||
453 | /// @param[in] deltaTime Delta time over which the deltaVelocity and deltaTheta were measured in [s] | ||
454 | /// @param[in] p_deltaVelocity Integrated acceleration in platform frame coordinates in [m/s] | ||
455 | /// @param[in] p_deltaTheta Integrated angular rate in platform frame coordinates in [rad] | ||
456 | /// @param[in] nameId NameId of the calling node for logging | ||
457 | void addDeltaMeasurement(const InsTime& epoch, double dt, double deltaTime, | ||
458 | const Eigen::Vector3d& p_deltaVelocity, const Eigen::Vector3d& p_deltaTheta, const char* nameId); | ||
459 | |||
460 | /// @brief Returns the last state as PosVelAtt | ||
461 | [[nodiscard]] std::shared_ptr<PosVelAtt> lastStateAsPosVelAtt() const; | ||
462 | |||
463 | /// @brief Calculates the inertial navigation solution | ||
464 | /// @param[in] imuPos IMU platform frame position with respect to body frame | ||
465 | /// @param[in] nameId NameId of the calling node for logging | ||
466 | /// @return The new state at the observation time | ||
467 | std::shared_ptr<PosVelAtt> calcInertialSolutionFromMeasurementBuffer(const ImuPos& imuPos, const char* nameId); | ||
468 | |||
469 | /// @brief Resizes the measurement and state buffers depending on the integration algorithm | ||
470 | void setBufferSizes(); | ||
471 | |||
472 | /// List of states. Length depends on algorithm used | ||
473 | ScrollingBuffer<State> _states = ScrollingBuffer<State>(1); | ||
474 | |||
475 | Eigen::Vector3d _p_lastBiasAcceleration = Eigen::Vector3d::Zero(); ///< Initial values for the acceleration bias [m/s^2] | ||
476 | Eigen::Vector3d _p_lastBiasAngularRate = Eigen::Vector3d::Zero(); ///< Initial values for the angular rate bias [rad/s] | ||
477 | |||
478 | // ######################################################################################################################################### | ||
479 | |||
480 | /// Frame to integrate the observations in | ||
481 | IntegrationFrame _integrationFrame = IntegrationFrame::NED; | ||
482 | |||
483 | /// Wether to lock the integration frame | ||
484 | bool _lockIntegrationFrame = false; | ||
485 | |||
486 | /// Integration algorithm used for the update | ||
487 | IntegrationAlgorithm _integrationAlgorithm = IntegrationAlgorithm::SingleStepRungeKutta3; | ||
488 | |||
489 | /// If true, then the measurements are accumulated values over the last epoch. (always true when using delta measurements, so GUI has no effect) | ||
490 | bool _accelerationsAreAveragedMeasurements = true; | ||
491 | |||
492 | // ######################################################################################################################################### | ||
493 | |||
494 | /// Settings for the models to use | ||
495 | PosVelAttDerivativeConstants _posVelAttDerivativeConstants; | ||
496 | |||
497 | friend bool InertialIntegratorGui(const char* label, InertialIntegrator& integrator, bool& preferAccelerationOverDeltaMeasurements, float width); | ||
498 | friend void to_json(json& j, const InertialIntegrator& data); | ||
499 | friend void from_json(const json& j, InertialIntegrator& data); | ||
500 | }; | ||
501 | |||
502 | /// @brief Shows a GUI for advanced configuration of the InertialIntegrator | ||
503 | /// @param[in] label Label to show. This has to be a unique id for ImGui. | ||
504 | /// @param[in] integrator Reference to the integrator to configure | ||
505 | /// @param[in] preferAccelerationOverDeltaMeasurements Wether to prefer accelerations over delta measurements | ||
506 | /// @param[in] width Width of the widget | ||
507 | bool InertialIntegratorGui(const char* label, InertialIntegrator& integrator, bool& preferAccelerationOverDeltaMeasurements, float width = 250.0F); | ||
508 | |||
509 | /// @brief Write info to a json object | ||
510 | /// @param[out] j Json output | ||
511 | /// @param[in] data Object to read info from | ||
512 | void to_json(json& j, const InertialIntegrator& data); | ||
513 | /// @brief Read info from a json object | ||
514 | /// @param[in] j Json variable to read info from | ||
515 | /// @param[out] data Output object | ||
516 | void from_json(const json& j, InertialIntegrator& data); | ||
517 | |||
518 | /// @brief Converts the enum to a string | ||
519 | /// @param[in] algorithm Enum value to convert into text | ||
520 | /// @return String representation of the enum | ||
521 | const char* to_string(InertialIntegrator::IntegrationAlgorithm algorithm); | ||
522 | |||
523 | /// @brief Converts the enum to a string | ||
524 | /// @param[in] frame Enum value to convert into text | ||
525 | /// @return String representation of the enum | ||
526 | const char* to_string(InertialIntegrator::IntegrationFrame frame); | ||
527 | |||
528 | } // namespace NAV | ||
529 |