Line | Branch | Exec | Source |
---|---|---|---|
1 | // This file is part of INSTINCT, the INS Toolkit for Integrated | ||
2 | // Navigation Concepts and Training by the Institute of Navigation of | ||
3 | // the University of Stuttgart, Germany. | ||
4 | // | ||
5 | // This Source Code Form is subject to the terms of the Mozilla Public | ||
6 | // License, v. 2.0. If a copy of the MPL was not distributed with this | ||
7 | // file, You can obtain one at https://mozilla.org/MPL/2.0/. | ||
8 | |||
9 | #include "KvhUartSensor.hpp" | ||
10 | |||
11 | #include "KvhUtilities.hpp" | ||
12 | #include "util/Logger.hpp" | ||
13 | |||
14 | 112 | NAV::vendor::kvh::KvhUartSensor::KvhUartSensor(std::string name) | |
15 |
2/4✓ Branch 3 taken 112 times.
✗ Branch 4 not taken.
✓ Branch 6 taken 112 times.
✗ Branch 7 not taken.
|
224 | : _name(std::move(name)), _buffer(uart::sensors::UartSensor::DefaultReadBufferSize) |
16 | { | ||
17 |
1/2✓ Branch 1 taken 112 times.
✗ Branch 2 not taken.
|
112 | resetTracking(); |
18 | 112 | } | |
19 | |||
20 | 112 | void NAV::vendor::kvh::KvhUartSensor::resetTracking() | |
21 | { | ||
22 | 112 | _currentlyBuildingBinaryPacket = false; | |
23 | 112 | _currentlyBuildingAsciiPacket = false; | |
24 | |||
25 | 112 | _asciiEndChar1Found = false; | |
26 | 112 | _packetType = HeaderType::FMT_UNKNOWN; | |
27 | |||
28 | 112 | _buffer.resize(0); | |
29 | 112 | } | |
30 | |||
31 | ✗ | NAV::vendor::kvh::KvhUartSensor::HeaderType NAV::vendor::kvh::KvhUartSensor::bFindImuHeader(uint8_t ui8Data) | |
32 | { | ||
33 | ✗ | if (_eState == SM_IDLE) | |
34 | { | ||
35 | ✗ | if (ui8Data == ((HEADER_FMT_A >> 24U) & 0xFFU)) | |
36 | // || ui8Data == ((HEADER_FMT_B >> 24U) & 0xFFU) | ||
37 | // || ui8Data == ((HEADER_FMT_C >> 24U) & 0xFFU) | ||
38 | // || ui8Data == ((HEADER_FMT_XBIT >> 24U) & 0xFFU) | ||
39 | // || ui8Data == ((HEADER_FMT_XBIT2 >> 24U) & 0xFFU)) | ||
40 | { | ||
41 | ✗ | _eState = SM_H1; | |
42 | } | ||
43 | } | ||
44 | ✗ | else if (_eState == SM_H1) | |
45 | { | ||
46 | ✗ | if (ui8Data == ((HEADER_FMT_A >> 16U) & 0xFFU)) | |
47 | { | ||
48 | ✗ | _eState = SM_H2; | |
49 | } | ||
50 | else | ||
51 | { | ||
52 | ✗ | _eState = SM_IDLE; | |
53 | } | ||
54 | } | ||
55 | ✗ | else if (_eState == SM_H2) | |
56 | { | ||
57 | ✗ | if (ui8Data == ((HEADER_FMT_A >> 8U) & 0xFFU)) | |
58 | { | ||
59 | ✗ | _eState = SM_H3; | |
60 | } | ||
61 | ✗ | else if (ui8Data == ((HEADER_FMT_XBIT >> 8U) & 0xFFU)) | |
62 | { | ||
63 | ✗ | _eState = SM_X3; | |
64 | } | ||
65 | else | ||
66 | { | ||
67 | ✗ | _eState = SM_IDLE; | |
68 | } | ||
69 | } | ||
70 | ✗ | else if (_eState == SM_H3) | |
71 | { | ||
72 | ✗ | if (ui8Data == (HEADER_FMT_A & 0xFFU)) | |
73 | { | ||
74 | ✗ | _eState = SM_IDLE; | |
75 | ✗ | return HeaderType::FMT_A; | |
76 | } | ||
77 | ✗ | if (ui8Data == (HEADER_FMT_B & 0xFFU)) | |
78 | { | ||
79 | ✗ | _eState = SM_IDLE; | |
80 | ✗ | return HeaderType::FMT_B; | |
81 | } | ||
82 | ✗ | if (ui8Data == (HEADER_FMT_C & 0xFFU)) | |
83 | { | ||
84 | ✗ | _eState = SM_IDLE; | |
85 | ✗ | return HeaderType::FMT_C; | |
86 | } | ||
87 | |||
88 | ✗ | _eState = SM_IDLE; | |
89 | } | ||
90 | ✗ | else if (_eState == SM_X3) | |
91 | { | ||
92 | ✗ | if (ui8Data == (HEADER_FMT_XBIT & 0xFFU)) | |
93 | { | ||
94 | ✗ | _eState = SM_IDLE; | |
95 | ✗ | return HeaderType::FMT_XBIT; | |
96 | } | ||
97 | ✗ | if (ui8Data == (HEADER_FMT_XBIT2 & 0xFFU)) | |
98 | { | ||
99 | ✗ | _eState = SM_IDLE; | |
100 | ✗ | return HeaderType::FMT_XBIT2; | |
101 | } | ||
102 | |||
103 | ✗ | _eState = SM_IDLE; | |
104 | } | ||
105 | else | ||
106 | { | ||
107 | ✗ | _eState = SM_IDLE; | |
108 | } | ||
109 | |||
110 | ✗ | return HeaderType::FMT_UNKNOWN; | |
111 | } | ||
112 | |||
113 | ✗ | std::unique_ptr<uart::protocol::Packet> NAV::vendor::kvh::KvhUartSensor::findPacket(uint8_t dataByte) | |
114 | { | ||
115 | ✗ | if (_buffer.size() == _buffer.capacity()) | |
116 | { | ||
117 | // Buffer is full | ||
118 | ✗ | resetTracking(); | |
119 | ✗ | LOG_ERROR("{}: Discarding current packet, because buffer is full.", _name); | |
120 | } | ||
121 | |||
122 | ✗ | auto binaryPacketType = bFindImuHeader(dataByte); | |
123 | ✗ | if (binaryPacketType != HeaderType::FMT_UNKNOWN) | |
124 | { | ||
125 | ✗ | resetTracking(); | |
126 | ✗ | _packetType = binaryPacketType; | |
127 | ✗ | _currentlyBuildingBinaryPacket = true; | |
128 | ✗ | uint32_t header{}; | |
129 | ✗ | switch (binaryPacketType) | |
130 | { | ||
131 | ✗ | case HeaderType::FMT_A: | |
132 | ✗ | header = uart::stoh(HEADER_FMT_A, ENDIANNESS); | |
133 | ✗ | break; | |
134 | ✗ | case HeaderType::FMT_B: | |
135 | ✗ | header = uart::stoh(HEADER_FMT_B, ENDIANNESS); | |
136 | ✗ | break; | |
137 | ✗ | case HeaderType::FMT_C: | |
138 | ✗ | header = uart::stoh(HEADER_FMT_C, ENDIANNESS); | |
139 | ✗ | break; | |
140 | ✗ | case HeaderType::FMT_XBIT: | |
141 | ✗ | header = uart::stoh(HEADER_FMT_XBIT, ENDIANNESS); | |
142 | ✗ | break; | |
143 | ✗ | case HeaderType::FMT_XBIT2: | |
144 | ✗ | header = uart::stoh(HEADER_FMT_XBIT2, ENDIANNESS); | |
145 | ✗ | break; | |
146 | ✗ | default: | |
147 | ✗ | break; | |
148 | } | ||
149 | ✗ | _buffer.resize(4); | |
150 | ✗ | memcpy(_buffer.data(), &header, 4); | |
151 | |||
152 | ✗ | return nullptr; | |
153 | } | ||
154 | |||
155 | ✗ | if (!_currentlyBuildingAsciiPacket && !_currentlyBuildingBinaryPacket) | |
156 | { | ||
157 | ✗ | resetTracking(); | |
158 | ✗ | _currentlyBuildingAsciiPacket = true; | |
159 | ✗ | _buffer.push_back(dataByte); | |
160 | } | ||
161 | ✗ | else if (_currentlyBuildingBinaryPacket) | |
162 | { | ||
163 | ✗ | _buffer.push_back(dataByte); | |
164 | |||
165 | ✗ | if ((_packetType == HeaderType::FMT_A && _buffer.size() == 36) | |
166 | ✗ | || (_packetType == HeaderType::FMT_B && _buffer.size() == 40) | |
167 | ✗ | || (_packetType == HeaderType::FMT_C && _buffer.size() == 38) | |
168 | ✗ | || (_packetType == HeaderType::FMT_XBIT && _buffer.size() == 11) | |
169 | ✗ | || (_packetType == HeaderType::FMT_XBIT2 && _buffer.size() == 13)) | |
170 | { | ||
171 | // We have a possible binary packet! | ||
172 | ✗ | auto p = std::make_unique<uart::protocol::Packet>(_buffer, &_sensor); | |
173 | |||
174 | ✗ | if (p->isValid()) | |
175 | { | ||
176 | // We have a valid binary packet!!!. | ||
177 | LOG_DATA("{}: Valid binary packet: Type={}, Length={}", _name, fmt::underlying(_packetType), _buffer.size()); | ||
178 | ✗ | resetTracking(); | |
179 | ✗ | return p; | |
180 | } | ||
181 | // Invalid packet! | ||
182 | ✗ | LOG_DEBUG("{}: Invalid binary packet: Type={}, Length={}", _name, fmt::underlying(_packetType), _buffer.size()); | |
183 | ✗ | resetTracking(); | |
184 | ✗ | } | |
185 | ✗ | if (_buffer.size() >= 40) | |
186 | { | ||
187 | ✗ | resetTracking(); | |
188 | } | ||
189 | } | ||
190 | ✗ | else if (_currentlyBuildingAsciiPacket) | |
191 | { | ||
192 | ✗ | _buffer.push_back(dataByte); | |
193 | |||
194 | ✗ | if (dataByte == ASCII_ESCAPE_CHAR) | |
195 | { | ||
196 | ✗ | resetTracking(); | |
197 | } | ||
198 | ✗ | else if (dataByte == ASCII_END_CHAR_1) | |
199 | { | ||
200 | ✗ | _asciiEndChar1Found = true; | |
201 | } | ||
202 | ✗ | else if (_asciiEndChar1Found) | |
203 | { | ||
204 | ✗ | if (dataByte == ASCII_END_CHAR_2) | |
205 | { | ||
206 | // We have a possible data packet | ||
207 | ✗ | auto p = std::make_unique<uart::protocol::Packet>(_buffer, &_sensor); | |
208 | |||
209 | ✗ | if (p->isValid()) | |
210 | { | ||
211 | // We have a valid ascii packet!!!. | ||
212 | LOG_DATA("{}: Valid ascii packet: {}", _name, p->datastr().substr(0, p->getRawDataLength() - 2)); | ||
213 | ✗ | resetTracking(); | |
214 | ✗ | return p; | |
215 | } | ||
216 | // Invalid packet! | ||
217 | ✗ | LOG_ERROR("{}: Invalid ascii packet: {}", _name, p->datastr()); | |
218 | ✗ | } | |
219 | |||
220 | ✗ | resetTracking(); | |
221 | } | ||
222 | |||
223 | ✗ | if (_buffer.size() >= MAX_SIZE_ASCII_PACKET) | |
224 | { | ||
225 | ✗ | LOG_ERROR("{}: Buffer exceeded the Maximum Ascii Packet Size", _name); | |
226 | ✗ | resetTracking(); | |
227 | } | ||
228 | } | ||
229 | |||
230 | ✗ | return nullptr; | |
231 | } | ||
232 | |||
233 | ✗ | void NAV::vendor::kvh::KvhUartSensor::packetFinderFunction(const std::vector<uint8_t>& data, const uart::xplat::TimeStamp& timestamp, uart::sensors::UartSensor::ValidPacketFoundHandler dispatchPacket, void* dispatchPacketUserData, void* userData) | |
234 | { | ||
235 | ✗ | auto* sensor = static_cast<KvhUartSensor*>(userData); | |
236 | |||
237 | ✗ | for (size_t i = 0; i < data.size(); i++, sensor->_runningDataIndex++) | |
238 | { | ||
239 | ✗ | auto packetPointer = sensor->findPacket(data.at(i)); | |
240 | |||
241 | ✗ | if (packetPointer != nullptr) | |
242 | { | ||
243 | ✗ | uart::protocol::Packet packet = *packetPointer; | |
244 | ✗ | dispatchPacket(dispatchPacketUserData, packet, sensor->_runningDataIndex, timestamp); | |
245 | ✗ | } | |
246 | ✗ | } | |
247 | ✗ | } | |
248 | |||
249 | ✗ | uart::protocol::Packet::Type NAV::vendor::kvh::KvhUartSensor::packetTypeFunction(const uart::protocol::Packet& packet) | |
250 | { | ||
251 | ✗ | if (packet.getRawDataLength() < 1) | |
252 | { | ||
253 | ✗ | LOG_CRITICAL("Packet does not contain any data."); | |
254 | } | ||
255 | |||
256 | // Check for carriage return and line feed | ||
257 | ✗ | if (packet.getRawData().at(packet.getRawDataLength() - 2) == uart::CARRIAGE_RETURN | |
258 | ✗ | && packet.getRawData().at(packet.getRawDataLength() - 1) == uart::LINE_FEED) | |
259 | { | ||
260 | ✗ | return uart::protocol::Packet::Type::TYPE_ASCII; | |
261 | } | ||
262 | |||
263 | ✗ | uint32_t data_zero{}; | |
264 | ✗ | memcpy(&data_zero, packet.getRawData().data(), sizeof(uint32_t)); | |
265 | ✗ | data_zero = uart::stoh(data_zero, ENDIANNESS); | |
266 | |||
267 | ✗ | if (data_zero == HEADER_FMT_A || data_zero == HEADER_FMT_B || data_zero == HEADER_FMT_C) | |
268 | { | ||
269 | ✗ | return uart::protocol::Packet::Type::TYPE_BINARY; | |
270 | } | ||
271 | |||
272 | ✗ | return uart::protocol::Packet::Type::TYPE_UNKNOWN; | |
273 | } | ||
274 | |||
275 | ✗ | bool NAV::vendor::kvh::KvhUartSensor::checksumFunction(const uart::protocol::Packet& packet) | |
276 | { | ||
277 | // minumum binary packet is 9 bytes | ||
278 | ✗ | if (packet.getRawDataLength() < 1) | |
279 | { | ||
280 | ✗ | return false; | |
281 | } | ||
282 | |||
283 | ✗ | if (packet.type() == uart::protocol::Packet::Type::TYPE_ASCII) | |
284 | { | ||
285 | // Ascii does not have a checksum | ||
286 | ✗ | return true; | |
287 | } | ||
288 | |||
289 | ✗ | if (packet.type() == uart::protocol::Packet::Type::TYPE_BINARY) | |
290 | { | ||
291 | ✗ | uint32_t checksumCalc = kvh::ui32CalcImuCRC(packet.getRawData()); | |
292 | |||
293 | ✗ | uint32_t checksumPacket = 0; | |
294 | ✗ | memcpy(&checksumPacket, packet.getRawData().data() + packet.getRawDataLength() - sizeof(uint32_t), sizeof(uint32_t)); | |
295 | ✗ | checksumPacket = uart::stoh(checksumPacket, ENDIANNESS); | |
296 | |||
297 | ✗ | return checksumPacket == checksumCalc; | |
298 | } | ||
299 | |||
300 | ✗ | LOG_CRITICAL("Can't calculate checksum of packet with unknown type"); | |
301 | return false; | ||
302 | } | ||
303 | |||
304 | ✗ | bool NAV::vendor::kvh::KvhUartSensor::isErrorFunction([[maybe_unused]] const uart::protocol::Packet& packet) | |
305 | { | ||
306 | ✗ | return false; | |
307 | } | ||
308 | |||
309 | ✗ | bool NAV::vendor::kvh::KvhUartSensor::isResponseFunction([[maybe_unused]] const uart::protocol::Packet& packet) | |
310 | { | ||
311 | ✗ | return false; | |
312 | } | ||
313 |