| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | // This file is part of INSTINCT, the INS Toolkit for Integrated | ||
| 2 | // Navigation Concepts and Training by the Institute of Navigation of | ||
| 3 | // the University of Stuttgart, Germany. | ||
| 4 | // | ||
| 5 | // This Source Code Form is subject to the terms of the Mozilla Public | ||
| 6 | // License, v. 2.0. If a copy of the MPL was not distributed with this | ||
| 7 | // file, You can obtain one at https://mozilla.org/MPL/2.0/. | ||
| 8 | |||
| 9 | #include "KvhUartSensor.hpp" | ||
| 10 | |||
| 11 | #include "KvhUtilities.hpp" | ||
| 12 | #include "util/Logger.hpp" | ||
| 13 | |||
| 14 | 114 | NAV::vendor::kvh::KvhUartSensor::KvhUartSensor(std::string name) | |
| 15 |
2/4✓ Branch 3 taken 114 times.
✗ Branch 4 not taken.
✓ Branch 6 taken 114 times.
✗ Branch 7 not taken.
|
228 | : _name(std::move(name)), _buffer(uart::sensors::UartSensor::DefaultReadBufferSize) |
| 16 | { | ||
| 17 |
1/2✓ Branch 1 taken 114 times.
✗ Branch 2 not taken.
|
114 | resetTracking(); |
| 18 | 114 | } | |
| 19 | |||
| 20 | 114 | void NAV::vendor::kvh::KvhUartSensor::resetTracking() | |
| 21 | { | ||
| 22 | 114 | _currentlyBuildingBinaryPacket = false; | |
| 23 | 114 | _currentlyBuildingAsciiPacket = false; | |
| 24 | |||
| 25 | 114 | _asciiEndChar1Found = false; | |
| 26 | 114 | _packetType = HeaderType::FMT_UNKNOWN; | |
| 27 | |||
| 28 | 114 | _buffer.resize(0); | |
| 29 | 114 | } | |
| 30 | |||
| 31 | ✗ | NAV::vendor::kvh::KvhUartSensor::HeaderType NAV::vendor::kvh::KvhUartSensor::bFindImuHeader(uint8_t ui8Data) | |
| 32 | { | ||
| 33 | ✗ | if (_eState == SM_IDLE) | |
| 34 | { | ||
| 35 | ✗ | if (ui8Data == ((HEADER_FMT_A >> 24U) & 0xFFU)) | |
| 36 | // || ui8Data == ((HEADER_FMT_B >> 24U) & 0xFFU) | ||
| 37 | // || ui8Data == ((HEADER_FMT_C >> 24U) & 0xFFU) | ||
| 38 | // || ui8Data == ((HEADER_FMT_XBIT >> 24U) & 0xFFU) | ||
| 39 | // || ui8Data == ((HEADER_FMT_XBIT2 >> 24U) & 0xFFU)) | ||
| 40 | { | ||
| 41 | ✗ | _eState = SM_H1; | |
| 42 | } | ||
| 43 | } | ||
| 44 | ✗ | else if (_eState == SM_H1) | |
| 45 | { | ||
| 46 | ✗ | if (ui8Data == ((HEADER_FMT_A >> 16U) & 0xFFU)) | |
| 47 | { | ||
| 48 | ✗ | _eState = SM_H2; | |
| 49 | } | ||
| 50 | else | ||
| 51 | { | ||
| 52 | ✗ | _eState = SM_IDLE; | |
| 53 | } | ||
| 54 | } | ||
| 55 | ✗ | else if (_eState == SM_H2) | |
| 56 | { | ||
| 57 | ✗ | if (ui8Data == ((HEADER_FMT_A >> 8U) & 0xFFU)) | |
| 58 | { | ||
| 59 | ✗ | _eState = SM_H3; | |
| 60 | } | ||
| 61 | ✗ | else if (ui8Data == ((HEADER_FMT_XBIT >> 8U) & 0xFFU)) | |
| 62 | { | ||
| 63 | ✗ | _eState = SM_X3; | |
| 64 | } | ||
| 65 | else | ||
| 66 | { | ||
| 67 | ✗ | _eState = SM_IDLE; | |
| 68 | } | ||
| 69 | } | ||
| 70 | ✗ | else if (_eState == SM_H3) | |
| 71 | { | ||
| 72 | ✗ | if (ui8Data == (HEADER_FMT_A & 0xFFU)) | |
| 73 | { | ||
| 74 | ✗ | _eState = SM_IDLE; | |
| 75 | ✗ | return HeaderType::FMT_A; | |
| 76 | } | ||
| 77 | ✗ | if (ui8Data == (HEADER_FMT_B & 0xFFU)) | |
| 78 | { | ||
| 79 | ✗ | _eState = SM_IDLE; | |
| 80 | ✗ | return HeaderType::FMT_B; | |
| 81 | } | ||
| 82 | ✗ | if (ui8Data == (HEADER_FMT_C & 0xFFU)) | |
| 83 | { | ||
| 84 | ✗ | _eState = SM_IDLE; | |
| 85 | ✗ | return HeaderType::FMT_C; | |
| 86 | } | ||
| 87 | |||
| 88 | ✗ | _eState = SM_IDLE; | |
| 89 | } | ||
| 90 | ✗ | else if (_eState == SM_X3) | |
| 91 | { | ||
| 92 | ✗ | if (ui8Data == (HEADER_FMT_XBIT & 0xFFU)) | |
| 93 | { | ||
| 94 | ✗ | _eState = SM_IDLE; | |
| 95 | ✗ | return HeaderType::FMT_XBIT; | |
| 96 | } | ||
| 97 | ✗ | if (ui8Data == (HEADER_FMT_XBIT2 & 0xFFU)) | |
| 98 | { | ||
| 99 | ✗ | _eState = SM_IDLE; | |
| 100 | ✗ | return HeaderType::FMT_XBIT2; | |
| 101 | } | ||
| 102 | |||
| 103 | ✗ | _eState = SM_IDLE; | |
| 104 | } | ||
| 105 | else | ||
| 106 | { | ||
| 107 | ✗ | _eState = SM_IDLE; | |
| 108 | } | ||
| 109 | |||
| 110 | ✗ | return HeaderType::FMT_UNKNOWN; | |
| 111 | } | ||
| 112 | |||
| 113 | ✗ | std::unique_ptr<uart::protocol::Packet> NAV::vendor::kvh::KvhUartSensor::findPacket(uint8_t dataByte) | |
| 114 | { | ||
| 115 | ✗ | if (_buffer.size() == _buffer.capacity()) | |
| 116 | { | ||
| 117 | // Buffer is full | ||
| 118 | ✗ | resetTracking(); | |
| 119 | ✗ | LOG_ERROR("{}: Discarding current packet, because buffer is full.", _name); | |
| 120 | } | ||
| 121 | |||
| 122 | ✗ | auto binaryPacketType = bFindImuHeader(dataByte); | |
| 123 | ✗ | if (binaryPacketType != HeaderType::FMT_UNKNOWN) | |
| 124 | { | ||
| 125 | ✗ | resetTracking(); | |
| 126 | ✗ | _packetType = binaryPacketType; | |
| 127 | ✗ | _currentlyBuildingBinaryPacket = true; | |
| 128 | ✗ | uint32_t header{}; | |
| 129 | ✗ | switch (binaryPacketType) | |
| 130 | { | ||
| 131 | ✗ | case HeaderType::FMT_A: | |
| 132 | ✗ | header = uart::stoh(HEADER_FMT_A, ENDIANNESS); | |
| 133 | ✗ | break; | |
| 134 | ✗ | case HeaderType::FMT_B: | |
| 135 | ✗ | header = uart::stoh(HEADER_FMT_B, ENDIANNESS); | |
| 136 | ✗ | break; | |
| 137 | ✗ | case HeaderType::FMT_C: | |
| 138 | ✗ | header = uart::stoh(HEADER_FMT_C, ENDIANNESS); | |
| 139 | ✗ | break; | |
| 140 | ✗ | case HeaderType::FMT_XBIT: | |
| 141 | ✗ | header = uart::stoh(HEADER_FMT_XBIT, ENDIANNESS); | |
| 142 | ✗ | break; | |
| 143 | ✗ | case HeaderType::FMT_XBIT2: | |
| 144 | ✗ | header = uart::stoh(HEADER_FMT_XBIT2, ENDIANNESS); | |
| 145 | ✗ | break; | |
| 146 | ✗ | default: | |
| 147 | ✗ | break; | |
| 148 | } | ||
| 149 | ✗ | _buffer.resize(4); | |
| 150 | ✗ | memcpy(_buffer.data(), &header, 4); | |
| 151 | |||
| 152 | ✗ | return nullptr; | |
| 153 | } | ||
| 154 | |||
| 155 | ✗ | if (!_currentlyBuildingAsciiPacket && !_currentlyBuildingBinaryPacket) | |
| 156 | { | ||
| 157 | ✗ | resetTracking(); | |
| 158 | ✗ | _currentlyBuildingAsciiPacket = true; | |
| 159 | ✗ | _buffer.push_back(dataByte); | |
| 160 | } | ||
| 161 | ✗ | else if (_currentlyBuildingBinaryPacket) | |
| 162 | { | ||
| 163 | ✗ | _buffer.push_back(dataByte); | |
| 164 | |||
| 165 | ✗ | if ((_packetType == HeaderType::FMT_A && _buffer.size() == 36) | |
| 166 | ✗ | || (_packetType == HeaderType::FMT_B && _buffer.size() == 40) | |
| 167 | ✗ | || (_packetType == HeaderType::FMT_C && _buffer.size() == 38) | |
| 168 | ✗ | || (_packetType == HeaderType::FMT_XBIT && _buffer.size() == 11) | |
| 169 | ✗ | || (_packetType == HeaderType::FMT_XBIT2 && _buffer.size() == 13)) | |
| 170 | { | ||
| 171 | // We have a possible binary packet! | ||
| 172 | ✗ | auto p = std::make_unique<uart::protocol::Packet>(_buffer, &_sensor); | |
| 173 | |||
| 174 | ✗ | if (p->isValid()) | |
| 175 | { | ||
| 176 | // We have a valid binary packet!!!. | ||
| 177 | LOG_DATA("{}: Valid binary packet: Type={}, Length={}", _name, fmt::underlying(_packetType), _buffer.size()); | ||
| 178 | ✗ | resetTracking(); | |
| 179 | ✗ | return p; | |
| 180 | } | ||
| 181 | // Invalid packet! | ||
| 182 | ✗ | LOG_DEBUG("{}: Invalid binary packet: Type={}, Length={}", _name, fmt::underlying(_packetType), _buffer.size()); | |
| 183 | ✗ | resetTracking(); | |
| 184 | ✗ | } | |
| 185 | ✗ | if (_buffer.size() >= 40) | |
| 186 | { | ||
| 187 | ✗ | resetTracking(); | |
| 188 | } | ||
| 189 | } | ||
| 190 | ✗ | else if (_currentlyBuildingAsciiPacket) | |
| 191 | { | ||
| 192 | ✗ | _buffer.push_back(dataByte); | |
| 193 | |||
| 194 | ✗ | if (dataByte == ASCII_ESCAPE_CHAR) | |
| 195 | { | ||
| 196 | ✗ | resetTracking(); | |
| 197 | } | ||
| 198 | ✗ | else if (dataByte == ASCII_END_CHAR_1) | |
| 199 | { | ||
| 200 | ✗ | _asciiEndChar1Found = true; | |
| 201 | } | ||
| 202 | ✗ | else if (_asciiEndChar1Found) | |
| 203 | { | ||
| 204 | ✗ | if (dataByte == ASCII_END_CHAR_2) | |
| 205 | { | ||
| 206 | // We have a possible data packet | ||
| 207 | ✗ | auto p = std::make_unique<uart::protocol::Packet>(_buffer, &_sensor); | |
| 208 | |||
| 209 | ✗ | if (p->isValid()) | |
| 210 | { | ||
| 211 | // We have a valid ascii packet!!!. | ||
| 212 | LOG_DATA("{}: Valid ascii packet: {}", _name, p->datastr().substr(0, p->getRawDataLength() - 2)); | ||
| 213 | ✗ | resetTracking(); | |
| 214 | ✗ | return p; | |
| 215 | } | ||
| 216 | // Invalid packet! | ||
| 217 | ✗ | LOG_ERROR("{}: Invalid ascii packet: {}", _name, p->datastr()); | |
| 218 | ✗ | } | |
| 219 | |||
| 220 | ✗ | resetTracking(); | |
| 221 | } | ||
| 222 | |||
| 223 | ✗ | if (_buffer.size() >= MAX_SIZE_ASCII_PACKET) | |
| 224 | { | ||
| 225 | ✗ | LOG_ERROR("{}: Buffer exceeded the Maximum Ascii Packet Size", _name); | |
| 226 | ✗ | resetTracking(); | |
| 227 | } | ||
| 228 | } | ||
| 229 | |||
| 230 | ✗ | return nullptr; | |
| 231 | } | ||
| 232 | |||
| 233 | ✗ | void NAV::vendor::kvh::KvhUartSensor::packetFinderFunction(const std::vector<uint8_t>& data, const uart::xplat::TimeStamp& timestamp, uart::sensors::UartSensor::ValidPacketFoundHandler dispatchPacket, void* dispatchPacketUserData, void* userData) | |
| 234 | { | ||
| 235 | ✗ | auto* sensor = static_cast<KvhUartSensor*>(userData); | |
| 236 | |||
| 237 | ✗ | for (size_t i = 0; i < data.size(); i++, sensor->_runningDataIndex++) | |
| 238 | { | ||
| 239 | ✗ | auto packetPointer = sensor->findPacket(data.at(i)); | |
| 240 | |||
| 241 | ✗ | if (packetPointer != nullptr) | |
| 242 | { | ||
| 243 | ✗ | uart::protocol::Packet packet = *packetPointer; | |
| 244 | ✗ | dispatchPacket(dispatchPacketUserData, packet, sensor->_runningDataIndex, timestamp); | |
| 245 | ✗ | } | |
| 246 | ✗ | } | |
| 247 | ✗ | } | |
| 248 | |||
| 249 | ✗ | uart::protocol::Packet::Type NAV::vendor::kvh::KvhUartSensor::packetTypeFunction(const uart::protocol::Packet& packet) | |
| 250 | { | ||
| 251 | ✗ | if (packet.getRawDataLength() < 1) | |
| 252 | { | ||
| 253 | ✗ | LOG_CRITICAL("Packet does not contain any data."); | |
| 254 | } | ||
| 255 | |||
| 256 | // Check for carriage return and line feed | ||
| 257 | ✗ | if (packet.getRawData().at(packet.getRawDataLength() - 2) == uart::CARRIAGE_RETURN | |
| 258 | ✗ | && packet.getRawData().at(packet.getRawDataLength() - 1) == uart::LINE_FEED) | |
| 259 | { | ||
| 260 | ✗ | return uart::protocol::Packet::Type::TYPE_ASCII; | |
| 261 | } | ||
| 262 | |||
| 263 | ✗ | uint32_t data_zero{}; | |
| 264 | ✗ | memcpy(&data_zero, packet.getRawData().data(), sizeof(uint32_t)); | |
| 265 | ✗ | data_zero = uart::stoh(data_zero, ENDIANNESS); | |
| 266 | |||
| 267 | ✗ | if (data_zero == HEADER_FMT_A || data_zero == HEADER_FMT_B || data_zero == HEADER_FMT_C) | |
| 268 | { | ||
| 269 | ✗ | return uart::protocol::Packet::Type::TYPE_BINARY; | |
| 270 | } | ||
| 271 | |||
| 272 | ✗ | return uart::protocol::Packet::Type::TYPE_UNKNOWN; | |
| 273 | } | ||
| 274 | |||
| 275 | ✗ | bool NAV::vendor::kvh::KvhUartSensor::checksumFunction(const uart::protocol::Packet& packet) | |
| 276 | { | ||
| 277 | // minumum binary packet is 9 bytes | ||
| 278 | ✗ | if (packet.getRawDataLength() < 1) | |
| 279 | { | ||
| 280 | ✗ | return false; | |
| 281 | } | ||
| 282 | |||
| 283 | ✗ | if (packet.type() == uart::protocol::Packet::Type::TYPE_ASCII) | |
| 284 | { | ||
| 285 | // Ascii does not have a checksum | ||
| 286 | ✗ | return true; | |
| 287 | } | ||
| 288 | |||
| 289 | ✗ | if (packet.type() == uart::protocol::Packet::Type::TYPE_BINARY) | |
| 290 | { | ||
| 291 | ✗ | uint32_t checksumCalc = kvh::ui32CalcImuCRC(packet.getRawData()); | |
| 292 | |||
| 293 | ✗ | uint32_t checksumPacket = 0; | |
| 294 | ✗ | memcpy(&checksumPacket, packet.getRawData().data() + packet.getRawDataLength() - sizeof(uint32_t), sizeof(uint32_t)); | |
| 295 | ✗ | checksumPacket = uart::stoh(checksumPacket, ENDIANNESS); | |
| 296 | |||
| 297 | ✗ | return checksumPacket == checksumCalc; | |
| 298 | } | ||
| 299 | |||
| 300 | ✗ | LOG_CRITICAL("Can't calculate checksum of packet with unknown type"); | |
| 301 | return false; | ||
| 302 | } | ||
| 303 | |||
| 304 | ✗ | bool NAV::vendor::kvh::KvhUartSensor::isErrorFunction([[maybe_unused]] const uart::protocol::Packet& packet) | |
| 305 | { | ||
| 306 | ✗ | return false; | |
| 307 | } | ||
| 308 | |||
| 309 | ✗ | bool NAV::vendor::kvh::KvhUartSensor::isResponseFunction([[maybe_unused]] const uart::protocol::Packet& packet) | |
| 310 | { | ||
| 311 | ✗ | return false; | |
| 312 | } | ||
| 313 |