Line |
Branch |
Exec |
Source |
1 |
|
|
// This file is part of INSTINCT, the INS Toolkit for Integrated |
2 |
|
|
// Navigation Concepts and Training by the Institute of Navigation of |
3 |
|
|
// the University of Stuttgart, Germany. |
4 |
|
|
// |
5 |
|
|
// This Source Code Form is subject to the terms of the Mozilla Public |
6 |
|
|
// License, v. 2.0. If a copy of the MPL was not distributed with this |
7 |
|
|
// file, You can obtain one at https://mozilla.org/MPL/2.0/. |
8 |
|
|
|
9 |
|
|
/// @file LeastSquares.hpp |
10 |
|
|
/// @brief Least Squares Algorithm |
11 |
|
|
/// @author T. Topp (topp@ins.uni-stuttgart.de) |
12 |
|
|
/// @date 2022-05-04 |
13 |
|
|
|
14 |
|
|
#pragma once |
15 |
|
|
|
16 |
|
|
#include <Eigen/Core> |
17 |
|
|
#include <Eigen/Dense> |
18 |
|
|
#include <unsupported/Eigen/MatrixFunctions> |
19 |
|
|
#include <cmath> |
20 |
|
|
#include "util/Logger.hpp" |
21 |
|
|
|
22 |
|
|
namespace NAV |
23 |
|
|
{ |
24 |
|
|
|
25 |
|
|
/// @brief Least Squares Uncertainties return value |
26 |
|
|
template<typename SolutionVector, typename VarianceMatrix> |
27 |
|
|
struct LeastSquaresResult |
28 |
|
|
{ |
29 |
|
|
SolutionVector solution; ///< Least squares solution |
30 |
|
|
VarianceMatrix variance; ///< Least squares variance |
31 |
|
|
}; |
32 |
|
|
|
33 |
|
|
/// @brief Finds the "least squares" solution for the equation \f$ \mathbf{v} = \mathbf{dz} - \mathbf{H} \mathbf{x} \f$ |
34 |
|
|
/// |
35 |
|
|
/// Minimizes the functional |
36 |
|
|
/// \anchor eq-LinearLeastSquares-functional \f{equation}{ \label{eq:eq-LinearLeastSquares-functional} |
37 |
|
|
/// J(\mathbf{x}) \equiv \sum_{i=1}^m v_i^2 = \mathbf{v}^T \mathbf{v} = (\mathbf{dz} - \mathbf{H} \mathbf{x})^T (\mathbf{dz} - \mathbf{H} \mathbf{x}) |
38 |
|
|
/// \f} |
39 |
|
|
/// which has the solution (assuming that the inverse to \f$ \mathbf{H}^T \mathbf{H} \f$ exists) |
40 |
|
|
/// \anchor eq-LinearLeastSquares-solution \f{equation}{ \label{eq:eq-LinearLeastSquares-solution} |
41 |
|
|
/// \mathbf{x} = \left(\mathbf{H}^T \mathbf{H} \right)^{-1} \mathbf{H}^T \mathbf{dz} |
42 |
|
|
/// \f} |
43 |
|
|
/// @param[in] H Design Matrix |
44 |
|
|
/// @param[in] dz Residual vector |
45 |
|
|
/// @return Least squares solution |
46 |
|
|
template<typename DerivedA, typename DerivedB> |
47 |
|
|
Eigen::Vector<typename DerivedA::Scalar, DerivedA::ColsAtCompileTime> solveLinearLeastSquares(const Eigen::MatrixBase<DerivedA>& H, const Eigen::MatrixBase<DerivedB>& dz) |
48 |
|
|
{ |
49 |
|
|
return (H.transpose() * H).inverse() * H.transpose() * dz; |
50 |
|
|
} |
51 |
|
|
|
52 |
|
|
/// @brief Finds the "weighted least squares" solution |
53 |
|
|
/// |
54 |
|
|
/// \anchor eq-WeightedLinearLeastSquares \f{equation}{ \label{eq:eq-WeightedLinearLeastSquares} |
55 |
|
|
/// \mathbf{x} = \left(\mathbf{H}^T \mathbf{W} \mathbf{H} \right)^{-1} \mathbf{H}^T \mathbf{W} \mathbf{dz} |
56 |
|
|
/// \f} |
57 |
|
|
/// @param[in] H Design Matrix |
58 |
|
|
/// @param[in] W Weight matrix |
59 |
|
|
/// @param[in] dz Residual vector |
60 |
|
|
/// @return Least squares solution |
61 |
|
|
template<typename DerivedA, typename DerivedW, typename DerivedB> |
62 |
|
|
Eigen::Vector<typename DerivedA::Scalar, DerivedA::ColsAtCompileTime> solveWeightedLinearLeastSquares(const Eigen::MatrixBase<DerivedA>& H, const Eigen::MatrixBase<DerivedW>& W, const Eigen::MatrixBase<DerivedB>& dz) |
63 |
|
|
{ |
64 |
|
|
return (H.transpose() * W * H).inverse() * H.transpose() * W * dz; |
65 |
|
|
} |
66 |
|
|
|
67 |
|
|
/// @brief Finds the "least squares" solution for the equation \f$ \mathbf{v} = \mathbf{dz} - \mathbf{H} \mathbf{x} \f$ |
68 |
|
|
/// @param[in] H Design Matrix |
69 |
|
|
/// @param[in] dz Residual vector |
70 |
|
|
/// @return Least squares solution and variance |
71 |
|
|
template<typename DerivedA, typename DerivedB> |
72 |
|
|
LeastSquaresResult<Eigen::Vector<typename DerivedA::Scalar, DerivedA::ColsAtCompileTime>, Eigen::Matrix<typename DerivedA::Scalar, DerivedA::ColsAtCompileTime, DerivedA::ColsAtCompileTime>> |
73 |
|
|
solveLinearLeastSquaresUncertainties(const Eigen::MatrixBase<DerivedA>& H, const Eigen::MatrixBase<DerivedB>& dz) |
74 |
|
|
{ |
75 |
|
|
// Cofactor matrix |
76 |
|
|
Eigen::Matrix<typename DerivedA::Scalar, DerivedA::ColsAtCompileTime, DerivedA::ColsAtCompileTime> Q = (H.transpose() * H).inverse(); |
77 |
|
|
LOG_DATA("Q = \n{}", Q); |
78 |
|
|
// Least squares solution |
79 |
|
|
Eigen::Vector<typename DerivedA::Scalar, DerivedA::ColsAtCompileTime> dx = Q * H.transpose() * dz; |
80 |
|
|
LOG_DATA("dx = {}", dx.transpose()); |
81 |
|
|
|
82 |
|
|
// Residual sum of squares |
83 |
|
|
double RSS = std::pow(dz.norm(), 2); |
84 |
|
|
LOG_DATA("RSS = {}", RSS); |
85 |
|
|
|
86 |
|
|
// Amount of equations |
87 |
|
|
auto m = H.rows(); |
88 |
|
|
// Amount of variables |
89 |
|
|
auto n = H.cols(); |
90 |
|
|
// Statistical degrees of freedom |
91 |
|
|
auto dof = m - n; |
92 |
|
|
LOG_DATA("dof = {}", dof); |
93 |
|
|
|
94 |
|
|
// Estimated error variance (reduced chi-squared statistic) |
95 |
|
|
double sigma2 = RSS / static_cast<double>(dof); |
96 |
|
|
LOG_DATA("sigma2 = {}", sigma2); |
97 |
|
|
|
98 |
|
|
// Covariance matrix |
99 |
|
|
Q *= sigma2; |
100 |
|
|
LOG_DATA("variance = \n{}", Q); |
101 |
|
|
|
102 |
|
|
return { .solution = dx, .variance = Q }; |
103 |
|
|
} |
104 |
|
|
|
105 |
|
|
/// @brief Finds the "weighted least squares" solution |
106 |
|
|
/// @param[in] H Design Matrix |
107 |
|
|
/// @param[in] W Weight matrix |
108 |
|
|
/// @param[in] dz Residual vector |
109 |
|
|
/// @return Weighted least squares solution and variance |
110 |
|
|
template<typename DerivedA, typename DerivedW, typename DerivedB> |
111 |
|
|
LeastSquaresResult<Eigen::Vector<typename DerivedA::Scalar, DerivedA::ColsAtCompileTime>, Eigen::Matrix<typename DerivedA::Scalar, DerivedA::ColsAtCompileTime, DerivedA::ColsAtCompileTime>> |
112 |
|
✗ |
solveWeightedLinearLeastSquaresUncertainties(const Eigen::MatrixBase<DerivedA>& H, const Eigen::MatrixBase<DerivedW>& W, const Eigen::MatrixBase<DerivedB>& dz) |
113 |
|
|
{ |
114 |
|
|
// Cofactor matrix |
115 |
|
✗ |
Eigen::Matrix<typename DerivedA::Scalar, DerivedA::ColsAtCompileTime, DerivedA::ColsAtCompileTime> Q = (H.transpose() * W * H).inverse(); |
116 |
|
|
LOG_DATA("Cofactor matrix = \n{}", Q); |
117 |
|
|
// Least squares solution |
118 |
|
✗ |
Eigen::Vector<typename DerivedA::Scalar, DerivedA::ColsAtCompileTime> dx = Q * H.transpose() * W * dz; |
119 |
|
|
LOG_DATA("dx = {}", dx.transpose()); |
120 |
|
|
|
121 |
|
|
// Residual sum of squares |
122 |
|
✗ |
double RSS = dz.transpose() * W * dz; |
123 |
|
|
LOG_DATA("RSS = {}", RSS); |
124 |
|
|
|
125 |
|
|
// Amount of equations |
126 |
|
✗ |
auto m = H.rows(); |
127 |
|
|
// Amount of variables |
128 |
|
✗ |
auto n = H.cols(); |
129 |
|
|
// Statistical degrees of freedom |
130 |
|
✗ |
auto dof = m - n; |
131 |
|
|
LOG_DATA("dof = {}", dof); |
132 |
|
|
|
133 |
|
|
// Estimated error variance (reduced chi-squared statistic) |
134 |
|
✗ |
double sigma2 = RSS / static_cast<double>(dof); |
135 |
|
|
LOG_DATA("sigma2 = {}", sigma2); |
136 |
|
|
|
137 |
|
|
// Covariance matrix |
138 |
|
✗ |
Q *= sigma2; |
139 |
|
|
LOG_DATA("Covariance matrix = \n{}", Q); |
140 |
|
|
|
141 |
|
✗ |
return { .solution = dx, .variance = Q }; |
142 |
|
✗ |
} |
143 |
|
|
|
144 |
|
|
} // namespace NAV |
145 |
|
|
|