Line | Branch | Exec | Source |
---|---|---|---|
1 | // This file is part of INSTINCT, the INS Toolkit for Integrated | ||
2 | // Navigation Concepts and Training by the Institute of Navigation of | ||
3 | // the University of Stuttgart, Germany. | ||
4 | // | ||
5 | // This Source Code Form is subject to the terms of the Mozilla Public | ||
6 | // License, v. 2.0. If a copy of the MPL was not distributed with this | ||
7 | // file, You can obtain one at https://mozilla.org/MPL/2.0/. | ||
8 | |||
9 | #include "QZSSEphemeris.hpp" | ||
10 | |||
11 | #include "Navigation/Constants.hpp" | ||
12 | #include "Navigation/GNSS/Functions.hpp" | ||
13 | |||
14 | #include "util/Logger.hpp" | ||
15 | |||
16 | namespace NAV | ||
17 | { | ||
18 | |||
19 | 4 | QZSSEphemeris::QZSSEphemeris(const InsTime& toc, const InsTime& toe, | |
20 | const size_t& IODE, const size_t& IODC, | ||
21 | const std::array<double, 3>& a, | ||
22 | const double& sqrt_A, const double& e, const double& i_0, const double& Omega_0, const double& omega, const double& M_0, | ||
23 | const double& delta_n, const double& Omega_dot, const double& i_dot, const double& Cus, const double& Cuc, | ||
24 | const double& Cis, const double& Cic, const double& Crs, const double& Crc, | ||
25 | const double& svAccuracy, uint8_t svHealth, | ||
26 | uint8_t L2ChannelCodes, bool L2DataFlagPCode, | ||
27 | 4 | const double& T_GD, bool fitIntervalFlag) | |
28 | : SatNavData(SatNavData::QZSSEphemeris, toc), | ||
29 | 4 | toc(toc), | |
30 | 4 | toe(toe), | |
31 | 4 | IODE(IODE), | |
32 | 4 | IODC(IODC), | |
33 | 4 | a(a), | |
34 | 4 | sqrt_A(sqrt_A), | |
35 | 4 | e(e), | |
36 | 4 | i_0(i_0), | |
37 | 4 | Omega_0(Omega_0), | |
38 | 4 | omega(omega), | |
39 | 4 | M_0(M_0), | |
40 | 4 | delta_n(delta_n), | |
41 | 4 | Omega_dot(Omega_dot), | |
42 | 4 | i_dot(i_dot), | |
43 | 4 | Cus(Cus), | |
44 | 4 | Cuc(Cuc), | |
45 | 4 | Cis(Cis), | |
46 | 4 | Cic(Cic), | |
47 | 4 | Crs(Crs), | |
48 | 4 | Crc(Crc), | |
49 | 4 | svAccuracy(svAccuracy), | |
50 | 4 | svHealth(svHealth), | |
51 | 4 | L2ChannelCodes(L2ChannelCodes), | |
52 | 4 | L2DataFlagPCode(L2DataFlagPCode), | |
53 | 4 | T_GD(T_GD), | |
54 | 4 | fitIntervalFlag(fitIntervalFlag) {} | |
55 | |||
56 | #ifdef TESTING | ||
57 | |||
58 | 1082 | QZSSEphemeris::QZSSEphemeris(int32_t year, int32_t month, int32_t day, int32_t hour, int32_t minute, double second, double svClockBias, double svClockDrift, double svClockDriftRate, | |
59 | double IODE, double Crs, double delta_n, double M_0, | ||
60 | double Cuc, double e, double Cus, double sqrt_A, | ||
61 | double Toe, double Cic, double Omega_0, double Cis, | ||
62 | double i_0, double Crc, double omega, double Omega_dot, | ||
63 | double i_dot, double L2ChannelCodes, double GPSWeek, double L2DataFlagPCode, | ||
64 | double svAccuracy, double svHealth, double T_GD, double IODC, | ||
65 | 1082 | double /* TransmissionTimeOfMessage */, double fitIntervalFlag, double /* spare1 */, double /* spare2 */) | |
66 |
2/4✓ Branch 1 taken 1082 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1082 times.
✗ Branch 5 not taken.
|
1082 | : SatNavData(SatNavData::QZSSEphemeris, InsTime(year, month, day, hour, minute, second, SatelliteSystem(QZSS).getTimeSystem())), |
67 | 1082 | toc(refTime), | |
68 |
2/4✓ Branch 1 taken 1082 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 1082 times.
✗ Branch 5 not taken.
|
1082 | toe(InsTime(0, static_cast<int32_t>(GPSWeek), Toe, SatelliteSystem(QZSS).getTimeSystem())), |
69 | 1082 | IODE(static_cast<size_t>(IODE)), | |
70 | 1082 | IODC(static_cast<size_t>(IODC)), | |
71 | 1082 | a({ svClockBias, svClockDrift, svClockDriftRate }), | |
72 | 1082 | sqrt_A(sqrt_A), | |
73 | 1082 | e(e), | |
74 | 1082 | i_0(i_0), | |
75 | 1082 | Omega_0(Omega_0), | |
76 | 1082 | omega(omega), | |
77 | 1082 | M_0(M_0), | |
78 | 1082 | delta_n(delta_n), | |
79 | 1082 | Omega_dot(Omega_dot), | |
80 | 1082 | i_dot(i_dot), | |
81 | 1082 | Cus(Cus), | |
82 | 1082 | Cuc(Cuc), | |
83 | 1082 | Cis(Cis), | |
84 | 1082 | Cic(Cic), | |
85 | 1082 | Crs(Crs), | |
86 | 1082 | Crc(Crc), | |
87 | 1082 | svAccuracy(svAccuracy), | |
88 | 1082 | svHealth(static_cast<uint8_t>(svHealth)), | |
89 | 1082 | L2ChannelCodes(static_cast<uint8_t>(L2ChannelCodes)), | |
90 | 1082 | L2DataFlagPCode(static_cast<bool>(L2DataFlagPCode)), | |
91 | 1082 | T_GD(T_GD), | |
92 |
1/2✓ Branch 2 taken 1082 times.
✗ Branch 3 not taken.
|
2164 | fitIntervalFlag(static_cast<bool>(fitIntervalFlag)) |
93 | 1082 | {} | |
94 | |||
95 | #endif | ||
96 | |||
97 | 150 | Clock::Corrections QZSSEphemeris::calcClockCorrections(const InsTime& recvTime, double dist, const Frequency& freq) const | |
98 | { | ||
99 | LOG_DATA("Calc Sat Clock corrections at receiver time {}", recvTime.toGPSweekTow()); | ||
100 | // Earth gravitational constant [m³/s²] (WGS 84 value of the earth's gravitational constant for GPS user) | ||
101 | 150 | const auto mu = InsConst::QZSS::MU; | |
102 | // Relativistic constant F for clock corrections [s/√m] (-2*√µ/c²) | ||
103 | 150 | const auto F = InsConst::QZSS::F; | |
104 | |||
105 | LOG_DATA(" toe {} (Time of ephemeris)", toe.toGPSweekTow()); | ||
106 | |||
107 | 150 | const auto A = sqrt_A * sqrt_A; // Semi-major axis [m] | |
108 | LOG_DATA(" A {} [m] (Semi-major axis)", A); | ||
109 | 150 | auto n_0 = std::sqrt(mu / std::pow(A, 3)); // Computed mean motion [rad/s] | |
110 | LOG_DATA(" n_0 {} [rad/s] (Computed mean motion)", n_0); | ||
111 | 150 | auto n = n_0 + delta_n; // Corrected mean motion [rad/s] | |
112 | LOG_DATA(" n {} [rad/s] (Corrected mean motion)", n); | ||
113 | |||
114 | // Time at transmission | ||
115 |
2/4✓ Branch 2 taken 150 times.
✗ Branch 3 not taken.
✓ Branch 5 taken 150 times.
✗ Branch 6 not taken.
|
150 | InsTime transTime0 = recvTime - std::chrono::duration<double>(dist / InsConst::C); |
116 | |||
117 | 150 | InsTime transTime = transTime0; | |
118 | LOG_DATA(" Iterating Time at transmission"); | ||
119 | 150 | double dt_sv = 0.0; | |
120 | 150 | double clkDrift = 0.0; | |
121 | |||
122 |
2/2✓ Branch 0 taken 300 times.
✓ Branch 1 taken 150 times.
|
450 | for (size_t i = 0; i < 2; i++) |
123 | { | ||
124 | LOG_DATA(" transTime {} (Time at transmission)", transTime.toGPSweekTow()); | ||
125 | |||
126 | // [s] | ||
127 |
1/2✓ Branch 1 taken 300 times.
✗ Branch 2 not taken.
|
300 | auto t_minus_toc = static_cast<double>((transTime - toc).count()); |
128 | LOG_DATA(" transTime - toc {} [s]", t_minus_toc); | ||
129 | |||
130 | // Time difference from ephemeris reference epoch [s] | ||
131 |
1/2✓ Branch 1 taken 300 times.
✗ Branch 2 not taken.
|
300 | double t_k = static_cast<double>((transTime - toe).count()); |
132 | LOG_DATA(" transTime - toe {} [s] (t_k = Time difference from ephemeris reference epoch)", t_k); | ||
133 | |||
134 | // Mean anomaly [rad] | ||
135 | 300 | auto M_k = M_0 + n * t_k; | |
136 | LOG_DATA(" M_k {} [s] (Mean anomaly)", M_k); | ||
137 | |||
138 | // Eccentric anomaly [rad] | ||
139 | 300 | double E_k = M_k; | |
140 | 300 | double E_k_old = 0.0; | |
141 | |||
142 |
6/6✓ Branch 1 taken 2904 times.
✓ Branch 2 taken 150 times.
✓ Branch 3 taken 2754 times.
✓ Branch 4 taken 150 times.
✓ Branch 5 taken 2754 times.
✓ Branch 6 taken 300 times.
|
3054 | for (size_t i = 0; std::abs(E_k - E_k_old) > 1e-13 && i < 10; i++) |
143 | { | ||
144 | 2754 | E_k_old = E_k; // Kepler’s equation ( Mk = E_k − e sin E_k ) may be solved for Eccentric anomaly (E_k) by iteration: | |
145 | 2754 | E_k = M_k + e * sin(E_k); | |
146 | } | ||
147 | |||
148 | // Relativistic correction term [s] | ||
149 | 300 | double dt_r = F * e * sqrt_A * std::sin(E_k); | |
150 | LOG_DATA(" dt_r {} [s] (Relativistic correction term)", dt_r); | ||
151 | |||
152 | // SV PRN code phase time offset [s] | ||
153 | 300 | dt_sv = a[0] + a[1] * t_minus_toc + a[2] * std::pow(t_minus_toc, 2) + dt_r; | |
154 | |||
155 | // See IS-GPS-200M GPS ICD, ch. 20.3.3.3.3.2, p.102 | ||
156 |
1/2✓ Branch 2 taken 300 times.
✗ Branch 3 not taken.
|
300 | dt_sv -= ratioFreqSquared(J01, freq, -128, -128) * T_GD; // TODO: Check again |
157 | |||
158 | LOG_DATA(" dt_sv {} [s] (SV PRN code phase time offset)", dt_sv); | ||
159 | |||
160 | // Groves ch. 9.3.1, eq. 9.78, p. 391 | ||
161 | 300 | clkDrift = a[1] + a[2] / 2.0 * t_minus_toc; | |
162 | |||
163 | // Correct transmit time for the satellite clock bias | ||
164 |
2/4✓ Branch 2 taken 300 times.
✗ Branch 3 not taken.
✓ Branch 5 taken 300 times.
✗ Branch 6 not taken.
|
300 | transTime = transTime0 - std::chrono::duration<double>(dt_sv); |
165 | } | ||
166 | LOG_DATA(" transTime {} (Time at transmission)", transTime.toGPSweekTow()); | ||
167 | |||
168 | 150 | return { .transmitTime = transTime, .bias = dt_sv, .drift = clkDrift }; | |
169 | } | ||
170 | |||
171 | 250 | Orbit::PosVelAccel QZSSEphemeris::calcSatelliteData(const InsTime& transTime, Orbit::Calc calc) const | |
172 | { | ||
173 |
2/4✓ Branch 1 taken 250 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 250 times.
✗ Branch 5 not taken.
|
250 | Eigen::Vector3d e_pos = Eigen::Vector3d::Zero(); |
174 |
2/4✓ Branch 1 taken 250 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 250 times.
✗ Branch 5 not taken.
|
250 | Eigen::Vector3d e_vel = Eigen::Vector3d::Zero(); |
175 |
2/4✓ Branch 1 taken 250 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 250 times.
✗ Branch 5 not taken.
|
250 | Eigen::Vector3d e_accel = Eigen::Vector3d::Zero(); |
176 | |||
177 | LOG_DATA("Calc Sat Position at transmit time {}", transTime.toGPSweekTow()); | ||
178 | // Earth gravitational constant [m³/s²] (WGS 84 value of the earth's gravitational constant for GPS user) | ||
179 | 250 | const auto mu = InsConst::QZSS::MU; | |
180 | // Earth angular velocity [rad/s] (WGS 84 value of the earth's rotation rate) | ||
181 | 250 | const auto Omega_e_dot = InsConst::QZSS::omega_ie; | |
182 | |||
183 | LOG_DATA(" toe {} (Time of ephemeris)", toe.toGPSweekTow()); | ||
184 | |||
185 | 250 | const auto A = sqrt_A * sqrt_A; // Semi-major axis [m] | |
186 | LOG_DATA(" A {} [m] (Semi-major axis)", A); | ||
187 | 250 | auto n_0 = std::sqrt(mu / std::pow(A, 3)); // Computed mean motion [rad/s] | |
188 | LOG_DATA(" n_0 {} [rad/s] (Computed mean motion)", n_0); | ||
189 | 250 | auto n = n_0 + delta_n; // Corrected mean motion [rad/s] | |
190 | LOG_DATA(" n {} [rad/s] (Corrected mean motion)", n); | ||
191 | |||
192 | // Eccentric anomaly [rad] | ||
193 | 250 | double E_k = 0.0; | |
194 | |||
195 | // Time difference from ephemeris reference epoch [s] | ||
196 |
1/2✓ Branch 1 taken 250 times.
✗ Branch 2 not taken.
|
250 | double t_k = static_cast<double>((transTime - toe).count()); |
197 | LOG_DATA(" t_k {} [s] (Time difference from ephemeris reference epoch)", t_k); | ||
198 | |||
199 | // Mean anomaly [rad] | ||
200 | 250 | auto M_k = M_0 + n * t_k; | |
201 | LOG_DATA(" M_k {} [s] (Mean anomaly)", M_k); | ||
202 | |||
203 | 250 | E_k = M_k; // Initial Value [rad] | |
204 | 250 | double E_k_old = 0.0; | |
205 | LOG_DATA(" Iterating E_k"); | ||
206 | LOG_DATA(" E_k {} [rad] (Eccentric anomaly)", E_k); | ||
207 |
5/6✓ Branch 1 taken 970 times.
✓ Branch 2 taken 250 times.
✓ Branch 3 taken 970 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 970 times.
✓ Branch 6 taken 250 times.
|
1220 | for (size_t i = 0; std::abs(E_k - E_k_old) > 1e-13 && i < 10; i++) |
208 | { | ||
209 | 970 | E_k_old = E_k; // Kepler’s equation ( Mk = E_k − e sin E_k ) may be solved for Eccentric anomaly (E_k) by iteration: | |
210 | 970 | E_k = E_k + (M_k - E_k + e * std::sin(E_k)) / (1 - e * std::cos(E_k)); // – Refined Value, minimum of three iterations, (j=1,2,3) | |
211 | LOG_DATA(" E_k {} [rad] (Eccentric anomaly)", E_k); // – Final Value (radians) | ||
212 | } | ||
213 | |||
214 | // auto v_k = 2.0 * std::atan(std::sqrt((1.0 + e) / (1.0 - e)) * std::tan(E_k / 2.0)); // True Anomaly (unambiguous quadrant) [rad] (GPS ICD algorithm) | ||
215 | // auto v_k = std::atan2(std::sqrt(1 - e * e) * std::sin(E_k) / (1 - e * std::cos(E_k)), (std::cos(E_k) - e) / (1 - e * std::cos(E_k))); // True Anomaly [rad] (GALILEO ICD algorithm) | ||
216 | 250 | auto v_k = std::atan2(std::sqrt(1 - e * e) * std::sin(E_k), (std::cos(E_k) - e)); // True Anomaly [rad] // simplified, since the denominators cancel out | |
217 | LOG_DATA(" v_k {} [rad] (True Anomaly (unambiguous quadrant))", v_k); | ||
218 | 250 | auto Phi_k = v_k + omega; // Argument of Latitude [rad] | |
219 | LOG_DATA(" Phi_k {} [rad] (Argument of Latitude)", Phi_k); | ||
220 | |||
221 | // Second Harmonic Perturbations | ||
222 | 250 | auto delta_u_k = Cus * std::sin(2 * Phi_k) + Cuc * std::cos(2 * Phi_k); // Argument of Latitude Correction [rad] | |
223 | LOG_DATA(" delta_u_k {} [rad] (Argument of Latitude Correction)", delta_u_k); | ||
224 | 250 | auto delta_r_k = Crs * std::sin(2 * Phi_k) + Crc * std::cos(2 * Phi_k); // Radius Correction [m] | |
225 | LOG_DATA(" delta_r_k {} [m] (Radius Correction)", delta_r_k); | ||
226 | 250 | auto delta_i_k = Cis * std::sin(2 * Phi_k) + Cic * std::cos(2 * Phi_k); // Inclination Correction [rad] | |
227 | LOG_DATA(" delta_i_k {} [rad] (Inclination Correction)", delta_i_k); | ||
228 | |||
229 | 250 | auto u_k = Phi_k + delta_u_k; // Corrected Argument of Latitude [rad] | |
230 | LOG_DATA(" u_k {} [rad] (Corrected Argument of Latitude)", u_k); | ||
231 | 250 | auto r_k = A * (1 - e * std::cos(E_k)) + delta_r_k; // Corrected Radius [m] | |
232 | LOG_DATA(" r_k {} [m] (Corrected Radius)", r_k); | ||
233 | 250 | auto i_k = i_0 + delta_i_k + i_dot * t_k; // Corrected Inclination [rad] | |
234 | LOG_DATA(" i_k {} [rad] (Corrected Inclination)", i_k); | ||
235 | |||
236 | 250 | auto x_k_op = r_k * std::cos(u_k); // Position in orbital plane [m] | |
237 | LOG_DATA(" x_k_op {} [m] (Position in orbital plane)", x_k_op); | ||
238 | 250 | auto y_k_op = r_k * std::sin(u_k); // Position in orbital plane [m] | |
239 | LOG_DATA(" y_k_op {} [m] (Position in orbital plane)", y_k_op); | ||
240 | |||
241 | // Corrected longitude of ascending node [rad] | ||
242 |
1/2✓ Branch 2 taken 250 times.
✗ Branch 3 not taken.
|
250 | auto Omega_k = Omega_0 + (Omega_dot - Omega_e_dot) * t_k - Omega_e_dot * static_cast<double>(toe.toGPSweekTow().tow); |
243 | LOG_DATA(" Omega_k {} [rad] (Corrected longitude of ascending node)", Omega_k); | ||
244 | |||
245 | // Earth-fixed x coordinates [m] | ||
246 | 250 | auto x_k = x_k_op * std::cos(Omega_k) - y_k_op * std::cos(i_k) * std::sin(Omega_k); | |
247 | LOG_DATA(" x_k {} [m] (Earth-fixed x coordinates)", x_k); | ||
248 | // Earth-fixed y coordinates [m] | ||
249 | 250 | auto y_k = x_k_op * std::sin(Omega_k) + y_k_op * std::cos(i_k) * std::cos(Omega_k); | |
250 | LOG_DATA(" y_k {} [m] (Earth-fixed y coordinates)", y_k); | ||
251 | // Earth-fixed z coordinates [m] | ||
252 | 250 | auto z_k = y_k_op * std::sin(i_k); | |
253 | LOG_DATA(" z_k {} [m] (Earth-fixed z coordinates)", z_k); | ||
254 | |||
255 |
1/2✓ Branch 1 taken 250 times.
✗ Branch 2 not taken.
|
250 | e_pos = Eigen::Vector3d{ x_k, y_k, z_k }; |
256 | |||
257 |
5/6✓ Branch 1 taken 150 times.
✓ Branch 2 taken 100 times.
✗ Branch 4 not taken.
✓ Branch 5 taken 150 times.
✓ Branch 6 taken 100 times.
✓ Branch 7 taken 150 times.
|
250 | if (calc & Calc_Velocity || calc & Calc_Acceleration) |
258 | { | ||
259 | // Eccentric Anomaly Rate [rad/s] | ||
260 | 100 | auto E_k_dot = n / (1 - e * std::cos(E_k)); | |
261 | // True Anomaly Rate [rad/s] | ||
262 | 100 | auto v_k_dot = E_k_dot * std::sqrt(1 - e * e) / (1 - e * std::cos(E_k)); | |
263 | // Corrected Inclination Angle Rate [rad/s] | ||
264 | 100 | auto i_k_dot = i_dot + 2 * v_k_dot * (Cis * std::cos(2 * Phi_k) - Cic * std::sin(2 * Phi_k)); | |
265 | // Corrected Argument of Latitude Rate [rad/s] | ||
266 | 100 | auto u_k_dot = v_k_dot + 2 * v_k_dot * (Cus * std::cos(2 * Phi_k) - Cuc * std::sin(2 * Phi_k)); | |
267 | // Corrected Radius Rate [m/s] | ||
268 | 100 | auto r_k_dot = e * A * E_k_dot * std::sin(E_k) + 2 * v_k_dot * (Crs * std::cos(2 * Phi_k) - Crc * std::sin(2 * Phi_k)); | |
269 | // Longitude of Ascending Node Rate [rad/s] | ||
270 | 100 | auto Omega_k_dot = Omega_dot - Omega_e_dot; | |
271 | // In-plane x velocity [m/s] | ||
272 | 100 | auto vx_k_op = r_k_dot * std::cos(u_k) - r_k * u_k_dot * std::sin(u_k); | |
273 | // In-plane y velocity [m/s] | ||
274 | 100 | auto vy_k_op = r_k_dot * std::sin(u_k) + r_k * u_k_dot * std::cos(u_k); | |
275 | // Earth-Fixed x velocity [m/s] | ||
276 | 100 | auto vx_k = -x_k_op * Omega_k_dot * std::sin(Omega_k) + vx_k_op * std::cos(Omega_k) - vy_k_op * std::sin(Omega_k) * std::cos(i_k) | |
277 | 100 | - y_k_op * (Omega_k_dot * std::cos(Omega_k) * std::cos(i_k) - i_k_dot * std::sin(Omega_k) * std::sin(i_k)); | |
278 | // Earth-Fixed y velocity [m/s] | ||
279 | 100 | auto vy_k = x_k_op * Omega_k_dot * std::cos(Omega_k) + vx_k_op * std::sin(Omega_k) + vy_k_op * std::cos(Omega_k) * std::cos(i_k) | |
280 | 100 | - y_k_op * (Omega_k_dot * std::sin(Omega_k) * std::cos(i_k) + i_k_dot * std::cos(Omega_k) * std::sin(i_k)); | |
281 | // Earth-Fixed z velocity [m/s] | ||
282 | 100 | auto vz_k = vy_k_op * std::sin(i_k) + y_k_op * i_k_dot * std::cos(i_k); | |
283 | |||
284 |
1/2✓ Branch 1 taken 100 times.
✗ Branch 2 not taken.
|
100 | if (calc & Calc_Velocity) |
285 | { | ||
286 |
1/2✓ Branch 1 taken 100 times.
✗ Branch 2 not taken.
|
100 | e_vel = Eigen::Vector3d{ vx_k, vy_k, vz_k }; |
287 | } | ||
288 | |||
289 |
2/2✓ Branch 1 taken 50 times.
✓ Branch 2 taken 50 times.
|
100 | if (calc & Calc_Acceleration) |
290 | { | ||
291 | // Oblate Earth acceleration Factor [m/s^2] | ||
292 | 50 | auto F = -(3.0 / 2.0) * InsConst::GPS::J2 * (mu / std::pow(r_k, 2)) * std::pow(InsConst::GPS::R_E / r_k, 2); | |
293 | // Earth-Fixed x acceleration [m/s^2] | ||
294 | 50 | auto ax_k = -mu * (x_k / std::pow(r_k, 3)) + F * ((1.0 - 5.0 * std::pow(z_k / r_k, 2)) * (x_k / r_k)) | |
295 | 50 | + 2 * vy_k * Omega_e_dot + x_k * std::pow(Omega_e_dot, 2); | |
296 | // Earth-Fixed y acceleration [m/s^2] | ||
297 | 50 | auto ay_k = -mu * (y_k / std::pow(r_k, 3)) + F * ((1.0 - 5.0 * std::pow(z_k / r_k, 2)) * (y_k / r_k)) | |
298 | 50 | + 2 * vx_k * Omega_e_dot + y_k * std::pow(Omega_e_dot, 2); | |
299 | // Earth-Fixed z acceleration [m/s^2] | ||
300 | 50 | auto az_k = -mu * (z_k / std::pow(r_k, 3)) + F * ((3.0 - 5.0 * std::pow(z_k / r_k, 2)) * (z_k / r_k)); | |
301 | |||
302 |
1/2✓ Branch 1 taken 50 times.
✗ Branch 2 not taken.
|
50 | e_accel = Eigen::Vector3d{ ax_k, ay_k, az_k }; |
303 | } | ||
304 | } | ||
305 | |||
306 | return { .e_pos = e_pos, | ||
307 | .e_vel = e_vel, | ||
308 |
3/6✓ Branch 1 taken 250 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 250 times.
✗ Branch 5 not taken.
✓ Branch 7 taken 250 times.
✗ Branch 8 not taken.
|
500 | .e_accel = e_accel }; |
309 | } | ||
310 | |||
311 | ✗ | bool QZSSEphemeris::isHealthy() const // TODO Parse Signal Id as a parameter and differentiate depending on the bitset | |
312 | { | ||
313 | ✗ | return svHealth.none(); | |
314 | } | ||
315 | |||
316 | ✗ | double QZSSEphemeris::calcSatellitePositionVariance() const | |
317 | { | ||
318 | // Getting the index and value again will discretize the URA values | ||
319 | ✗ | return std::pow(gpsUraIdx2Val(gpsUraVal2Idx(svAccuracy)), 2); | |
320 | } | ||
321 | |||
322 | } // namespace NAV | ||
323 |