Line | Branch | Exec | Source |
---|---|---|---|
1 | // This file is part of INSTINCT, the INS Toolkit for Integrated | ||
2 | // Navigation Concepts and Training by the Institute of Navigation of | ||
3 | // the University of Stuttgart, Germany. | ||
4 | // | ||
5 | // This Source Code Form is subject to the terms of the Mozilla Public | ||
6 | // License, v. 2.0. If a copy of the MPL was not distributed with this | ||
7 | // file, You can obtain one at https://mozilla.org/MPL/2.0/. | ||
8 | |||
9 | #include "WiFiPositioning.hpp" | ||
10 | |||
11 | #include <algorithm> | ||
12 | #include <ranges> | ||
13 | #include <regex> | ||
14 | |||
15 | #include "util/Logger.hpp" | ||
16 | #include "util/Container/Vector.hpp" | ||
17 | |||
18 | #include "Navigation/Constants.hpp" | ||
19 | |||
20 | #include "internal/gui/NodeEditorApplication.hpp" | ||
21 | #include "internal/gui/widgets/HelpMarker.hpp" | ||
22 | #include "internal/gui/widgets/imgui_ex.hpp" | ||
23 | #include "internal/gui/widgets/InputWithUnit.hpp" | ||
24 | |||
25 | #include "internal/NodeManager.hpp" | ||
26 | namespace nm = NAV::NodeManager; | ||
27 | #include "internal/FlowManager.hpp" | ||
28 | |||
29 | #include "NodeData/WiFi/WiFiObs.hpp" | ||
30 | #include "NodeData/WiFi/WiFiPositioningSolution.hpp" | ||
31 | #include "Navigation/GNSS/Functions.hpp" | ||
32 | #include "Navigation/Transformations/CoordinateFrames.hpp" | ||
33 | #include "Navigation/Transformations/Units.hpp" | ||
34 | |||
35 | #include "Navigation/Math/LeastSquares.hpp" | ||
36 | |||
37 | 112 | NAV::WiFiPositioning::WiFiPositioning() | |
38 |
12/24✓ Branch 1 taken 112 times.
✗ Branch 2 not taken.
✓ Branch 4 taken 112 times.
✗ Branch 5 not taken.
✓ Branch 8 taken 112 times.
✗ Branch 9 not taken.
✓ Branch 11 taken 112 times.
✗ Branch 12 not taken.
✓ Branch 14 taken 112 times.
✗ Branch 15 not taken.
✓ Branch 17 taken 112 times.
✗ Branch 18 not taken.
✓ Branch 20 taken 112 times.
✗ Branch 21 not taken.
✓ Branch 23 taken 112 times.
✗ Branch 24 not taken.
✓ Branch 26 taken 112 times.
✗ Branch 27 not taken.
✓ Branch 29 taken 112 times.
✗ Branch 30 not taken.
✓ Branch 33 taken 112 times.
✗ Branch 34 not taken.
✓ Branch 36 taken 112 times.
✗ Branch 37 not taken.
|
1232 | : Node(typeStatic()) |
39 | { | ||
40 | LOG_TRACE("{}: called", name); | ||
41 | |||
42 | 112 | _hasConfig = true; | |
43 | 112 | _guiConfigDefaultWindowSize = { 600, 500 }; | |
44 | |||
45 |
1/2✓ Branch 1 taken 112 times.
✗ Branch 2 not taken.
|
112 | updateNumberOfInputPins(); |
46 | |||
47 |
5/10✓ Branch 2 taken 112 times.
✗ Branch 3 not taken.
✓ Branch 6 taken 112 times.
✗ Branch 7 not taken.
✓ Branch 10 taken 112 times.
✗ Branch 11 not taken.
✓ Branch 14 taken 112 times.
✓ Branch 15 taken 112 times.
✗ Branch 19 not taken.
✗ Branch 20 not taken.
|
448 | nm::CreateOutputPin(this, NAV::WiFiPositioningSolution::type().c_str(), Pin::Type::Flow, { NAV::WiFiPositioningSolution::type() }); |
48 | 224 | } | |
49 | |||
50 | 224 | NAV::WiFiPositioning::~WiFiPositioning() | |
51 | { | ||
52 | LOG_TRACE("{}: called", nameId()); | ||
53 | 224 | } | |
54 | |||
55 | 224 | std::string NAV::WiFiPositioning::typeStatic() | |
56 | { | ||
57 |
1/2✓ Branch 1 taken 224 times.
✗ Branch 2 not taken.
|
448 | return "WiFiPositioning"; |
58 | } | ||
59 | |||
60 | ✗ | std::string NAV::WiFiPositioning::type() const | |
61 | { | ||
62 | ✗ | return typeStatic(); | |
63 | } | ||
64 | |||
65 | 112 | std::string NAV::WiFiPositioning::category() | |
66 | { | ||
67 |
1/2✓ Branch 1 taken 112 times.
✗ Branch 2 not taken.
|
224 | return "Data Processor"; |
68 | } | ||
69 | |||
70 | ✗ | void NAV::WiFiPositioning::guiConfig() | |
71 | { | ||
72 | ✗ | float columnWidth = 140.0F * gui::NodeEditorApplication::windowFontRatio(); | |
73 | ✗ | float configWidth = 380.0F * gui::NodeEditorApplication::windowFontRatio(); | |
74 | ✗ | float unitWidth = 150.0F * gui::NodeEditorApplication::windowFontRatio(); | |
75 | |||
76 | ✗ | if (ImGui::Button(fmt::format("Add Input Pin##{}", size_t(id)).c_str())) | |
77 | { | ||
78 | ✗ | _nWifiInputPins++; | |
79 | ✗ | LOG_DEBUG("{}: # Input Pins changed to {}", nameId(), _nWifiInputPins); | |
80 | ✗ | flow::ApplyChanges(); | |
81 | ✗ | updateNumberOfInputPins(); | |
82 | } | ||
83 | ✗ | ImGui::SameLine(); | |
84 | ✗ | if (ImGui::Button(fmt::format("Delete Input Pin##{}", size_t(id)).c_str())) | |
85 | { | ||
86 | ✗ | _nWifiInputPins--; | |
87 | ✗ | LOG_DEBUG("{}: # Input Pins changed to {}", nameId(), _nWifiInputPins); | |
88 | ✗ | flow::ApplyChanges(); | |
89 | ✗ | updateNumberOfInputPins(); | |
90 | } | ||
91 | |||
92 | ✗ | ImGui::SetNextItemWidth(250 * gui::NodeEditorApplication::windowFontRatio()); | |
93 | |||
94 | // ########################################################################################################### | ||
95 | // Frames | ||
96 | // ########################################################################################################### | ||
97 | ✗ | if (_numOfDevices == 0) | |
98 | { | ||
99 | ✗ | if (auto frame = static_cast<int>(_frame); | |
100 | ✗ | ImGui::Combo(fmt::format("Frame##{}", size_t(id)).c_str(), &frame, "ECEF\0LLA\0\0")) | |
101 | { | ||
102 | ✗ | _frame = static_cast<decltype(_frame)>(frame); | |
103 | ✗ | switch (_frame) | |
104 | { | ||
105 | ✗ | case Frame::ECEF: | |
106 | ✗ | LOG_DEBUG("{}: Frame changed to ECEF", nameId()); | |
107 | ✗ | break; | |
108 | ✗ | case Frame::LLA: | |
109 | ✗ | LOG_DEBUG("{}: Frame changed to LLA", nameId()); | |
110 | ✗ | break; | |
111 | } | ||
112 | } | ||
113 | |||
114 | ✗ | flow::ApplyChanges(); | |
115 | } | ||
116 | |||
117 | ✗ | if (ImGui::BeginTable("AccessPointInput", 6, ImGuiTableFlags_Borders | ImGuiTableFlags_SizingFixedFit | ImGuiTableFlags_NoHostExtendX, ImVec2(0.0F, 0.0F))) | |
118 | { | ||
119 | // Column headers | ||
120 | ✗ | ImGui::TableSetupColumn("MAC address", ImGuiTableColumnFlags_WidthFixed, columnWidth); | |
121 | ✗ | if (_frame == Frame::ECEF) | |
122 | { | ||
123 | ✗ | ImGui::TableSetupColumn("X", ImGuiTableColumnFlags_WidthFixed, columnWidth); | |
124 | ✗ | ImGui::TableSetupColumn("Y", ImGuiTableColumnFlags_WidthFixed, columnWidth); | |
125 | ✗ | ImGui::TableSetupColumn("Z", ImGuiTableColumnFlags_WidthFixed, columnWidth); | |
126 | } | ||
127 | ✗ | else if (_frame == Frame::LLA) | |
128 | { | ||
129 | ✗ | ImGui::TableSetupColumn("Latitude", ImGuiTableColumnFlags_WidthFixed, columnWidth); | |
130 | ✗ | ImGui::TableSetupColumn("Longitude", ImGuiTableColumnFlags_WidthFixed, columnWidth); | |
131 | ✗ | ImGui::TableSetupColumn("Altitude", ImGuiTableColumnFlags_WidthFixed, columnWidth); | |
132 | } | ||
133 | ✗ | ImGui::TableSetupColumn("Bias", ImGuiTableColumnFlags_WidthFixed, columnWidth); | |
134 | ✗ | ImGui::TableSetupColumn("Scale", ImGuiTableColumnFlags_WidthFixed, columnWidth); | |
135 | |||
136 | // Automatic header row | ||
137 | ✗ | ImGui::TableHeadersRow(); | |
138 | |||
139 | ✗ | for (size_t rowIndex = 0; rowIndex < _numOfDevices; rowIndex++) | |
140 | { | ||
141 | ✗ | ImGui::TableNextRow(); | |
142 | ✗ | ImGui::TableNextColumn(); | |
143 | ✗ | auto* devPosRow = _devicePositions.at(rowIndex).data(); | |
144 | |||
145 | // MAC address validation | ||
146 | ✗ | std::regex macRegex("^([0-9A-Fa-f]{2}[:-]){5}([0-9A-Fa-f]{2})$"); | |
147 | |||
148 | ✗ | ImGui::SetNextItemWidth(columnWidth); | |
149 | ✗ | if (ImGui::InputText(fmt::format("##Mac{}", rowIndex).c_str(), &_deviceMacAddresses.at(rowIndex), ImGuiInputTextFlags_None)) | |
150 | { | ||
151 | ✗ | std::transform(_deviceMacAddresses.at(rowIndex).begin(), _deviceMacAddresses.at(rowIndex).end(), _deviceMacAddresses.at(rowIndex).begin(), ::toupper); // Convert to uppercase | |
152 | ✗ | if (!std::regex_match(_deviceMacAddresses.at(rowIndex), macRegex)) | |
153 | { | ||
154 | ✗ | _deviceMacAddresses.at(rowIndex) = "00:00:00:00:00:00"; | |
155 | ✗ | LOG_DEBUG("{}: Invalid MAC address", nameId()); | |
156 | } | ||
157 | else | ||
158 | { | ||
159 | ✗ | flow::ApplyChanges(); | |
160 | } | ||
161 | } | ||
162 | ✗ | if (_frame == Frame::ECEF) | |
163 | { | ||
164 | ✗ | ImGui::TableNextColumn(); | |
165 | ✗ | ImGui::SetNextItemWidth(columnWidth); | |
166 | ✗ | if (ImGui::InputDouble(fmt::format("##InputX{}", rowIndex).c_str(), &devPosRow[0], 0.0, 0.0, "%.4fm")) | |
167 | { | ||
168 | ✗ | flow::ApplyChanges(); | |
169 | } | ||
170 | ✗ | ImGui::TableNextColumn(); | |
171 | ✗ | ImGui::SetNextItemWidth(columnWidth); | |
172 | ✗ | if (ImGui::InputDouble(fmt::format("##InputY{}", rowIndex).c_str(), &devPosRow[1], 0.0, 0.0, "%.4fm")) | |
173 | { | ||
174 | ✗ | flow::ApplyChanges(); | |
175 | } | ||
176 | ✗ | ImGui::TableNextColumn(); | |
177 | ✗ | ImGui::SetNextItemWidth(columnWidth); | |
178 | ✗ | if (ImGui::InputDouble(fmt::format("##InputZ{}", rowIndex).c_str(), &devPosRow[2], 0.0, 0.0, "%.4fm")) | |
179 | { | ||
180 | ✗ | flow::ApplyChanges(); | |
181 | } | ||
182 | } | ||
183 | ✗ | else if (_frame == Frame::LLA) | |
184 | { | ||
185 | ✗ | ImGui::TableNextColumn(); | |
186 | ✗ | ImGui::SetNextItemWidth(columnWidth); | |
187 | ✗ | if (ImGui::InputDoubleL(fmt::format("##InputLat{}", rowIndex).c_str(), &devPosRow[0], -180, 180, 0.0, 0.0, "%.8f°")) | |
188 | { | ||
189 | ✗ | flow::ApplyChanges(); | |
190 | } | ||
191 | ✗ | ImGui::TableNextColumn(); | |
192 | ✗ | ImGui::SetNextItemWidth(columnWidth); | |
193 | ✗ | if (ImGui::InputDoubleL(fmt::format("##InputLon{}", rowIndex).c_str(), &devPosRow[1], -180, 180, 0.0, 0.0, "%.8f°")) | |
194 | { | ||
195 | ✗ | flow::ApplyChanges(); | |
196 | } | ||
197 | ✗ | ImGui::TableNextColumn(); | |
198 | ✗ | ImGui::SetNextItemWidth(columnWidth); | |
199 | ✗ | if (ImGui::InputDouble(fmt::format("##InputHeight{}", rowIndex).c_str(), &devPosRow[2], 0.0, 0.0, "%.4fm")) | |
200 | { | ||
201 | ✗ | flow::ApplyChanges(); | |
202 | } | ||
203 | } | ||
204 | ✗ | ImGui::TableNextColumn(); | |
205 | ✗ | ImGui::SetNextItemWidth(columnWidth); | |
206 | ✗ | if (ImGui::InputDouble(fmt::format("##InputBias{}", rowIndex).c_str(), &_deviceBias.at(rowIndex), 0.0, 0.0, "%.4fm")) | |
207 | { | ||
208 | ✗ | flow::ApplyChanges(); | |
209 | } | ||
210 | ✗ | ImGui::TableNextColumn(); | |
211 | ✗ | ImGui::SetNextItemWidth(columnWidth); | |
212 | ✗ | if (ImGui::InputDouble(fmt::format("##InputScale{}", rowIndex).c_str(), &_deviceScale.at(rowIndex), 0.0, 0.0, "%.4f")) | |
213 | { | ||
214 | ✗ | flow::ApplyChanges(); | |
215 | } | ||
216 | ✗ | } | |
217 | ✗ | ImGui::EndTable(); | |
218 | } | ||
219 | ✗ | if (ImGui::Button(fmt::format("Add Device##{}", size_t(id)).c_str(), ImVec2(columnWidth * 2.1F, 0))) | |
220 | { | ||
221 | ✗ | _numOfDevices++; | |
222 | ✗ | _deviceMacAddresses.emplace_back("00:00:00:00:00:00"); | |
223 | ✗ | _devicePositions.emplace_back(Eigen::Vector3d::Zero()); | |
224 | ✗ | _deviceBias.emplace_back(0.0); | |
225 | ✗ | _deviceScale.emplace_back(0.0); | |
226 | ✗ | flow::ApplyChanges(); | |
227 | } | ||
228 | ✗ | ImGui::SameLine(); | |
229 | ✗ | if (ImGui::Button(fmt::format("Delete Device##{}", size_t(id)).c_str(), ImVec2(columnWidth * 2.1F, 0))) | |
230 | { | ||
231 | ✗ | if (_numOfDevices > 0) | |
232 | { | ||
233 | ✗ | _numOfDevices--; | |
234 | ✗ | _deviceMacAddresses.pop_back(); | |
235 | ✗ | _devicePositions.pop_back(); | |
236 | ✗ | _deviceBias.pop_back(); | |
237 | ✗ | _deviceScale.pop_back(); | |
238 | ✗ | flow::ApplyChanges(); | |
239 | } | ||
240 | } | ||
241 | ✗ | ImGui::Separator(); | |
242 | ✗ | if (auto solutionMode = static_cast<int>(_solutionMode); | |
243 | ✗ | ImGui::Combo(fmt::format("Solution##{}", size_t(id)).c_str(), &solutionMode, "Least squares\0Kalman Filter\0\0")) | |
244 | { | ||
245 | ✗ | _solutionMode = static_cast<decltype(_solutionMode)>(solutionMode); | |
246 | ✗ | switch (_solutionMode) | |
247 | { | ||
248 | ✗ | case SolutionMode::LSQ: | |
249 | ✗ | LOG_DEBUG("{}: Solution changed to Least squares 3D", nameId()); | |
250 | ✗ | break; | |
251 | ✗ | case SolutionMode::KF: | |
252 | ✗ | LOG_DEBUG("{}: Solution changed to Kalman Filter", nameId()); | |
253 | ✗ | break; | |
254 | } | ||
255 | } | ||
256 | ✗ | flow::ApplyChanges(); | |
257 | |||
258 | // ########################################################################################################### | ||
259 | // Least Squares | ||
260 | // ########################################################################################################### | ||
261 | ✗ | if (_solutionMode == SolutionMode::LSQ) | |
262 | { | ||
263 | ✗ | ImGui::SetNextItemOpen(true, ImGuiCond_FirstUseEver); | |
264 | ✗ | if (ImGui::TreeNode(fmt::format("x0 - Initial State##{}", size_t(id)).c_str())) | |
265 | { | ||
266 | ✗ | Eigen::Vector3d llaPos = trafo::ecef2lla_WGS84(_initialState.e_position); | |
267 | ✗ | llaPos.block<2, 1>(0, 0) = rad2deg(llaPos.block<2, 1>(0, 0)); | |
268 | |||
269 | ✗ | ImGui::SetNextItemWidth(configWidth); | |
270 | ✗ | if (ImGui::InputDouble3(fmt::format("Position ECEF (m)##{}", "m", | |
271 | ✗ | size_t(id)) | |
272 | .c_str(), | ||
273 | _initialState.e_position.data(), "%.4f", ImGuiInputTextFlags_CharsScientific)) | ||
274 | { | ||
275 | ✗ | LOG_DEBUG("{}: e_position changed to {}", nameId(), _initialState.e_position); | |
276 | ✗ | flow::ApplyChanges(); | |
277 | } | ||
278 | |||
279 | ✗ | ImGui::SetNextItemWidth(configWidth); | |
280 | ✗ | if (ImGui::InputDouble3(fmt::format("Position LLA (°,°,m)##{}", "(°,°,m)", | |
281 | ✗ | size_t(id)) | |
282 | .c_str(), | ||
283 | llaPos.data(), "%.8f", ImGuiInputTextFlags_CharsScientific)) | ||
284 | { | ||
285 | ✗ | llaPos.block<2, 1>(0, 0) = deg2rad(llaPos.block<2, 1>(0, 0)); | |
286 | ✗ | _initialState.e_position = trafo::lla2ecef_WGS84(llaPos); | |
287 | ✗ | LOG_DEBUG("{}: e_position changed to {}", nameId(), _initialState.e_position); | |
288 | ✗ | flow::ApplyChanges(); | |
289 | } | ||
290 | |||
291 | ✗ | if (_estimateBias) | |
292 | { | ||
293 | ✗ | ImGui::SetNextItemWidth(configWidth); | |
294 | ✗ | if (ImGui::InputDouble(fmt::format("Bias (m)##{}", "m", | |
295 | ✗ | size_t(id)) | |
296 | .c_str(), | ||
297 | &_initialState.bias, 0, 0, "%.3e", ImGuiInputTextFlags_CharsScientific)) | ||
298 | { | ||
299 | ✗ | LOG_DEBUG("{}: bias changed to {}", nameId(), _initialState.bias); | |
300 | ✗ | flow::ApplyChanges(); | |
301 | } | ||
302 | } | ||
303 | |||
304 | ✗ | ImGui::TreePop(); | |
305 | } | ||
306 | } | ||
307 | // ########################################################################################################### | ||
308 | // Kalman Filter | ||
309 | // ########################################################################################################### | ||
310 | ✗ | if (_solutionMode == SolutionMode::KF) | |
311 | { | ||
312 | // ########################################################################################################### | ||
313 | // Measurement Uncertainties 𝐑 | ||
314 | // ########################################################################################################### | ||
315 | |||
316 | ✗ | ImGui::SetNextItemOpen(true, ImGuiCond_FirstUseEver); | |
317 | ✗ | if (ImGui::TreeNode(fmt::format("R - Measurement Noise ##{}", size_t(id)).c_str())) | |
318 | { | ||
319 | ✗ | if (gui::widgets::InputDoubleWithUnit(fmt::format("({})##{}", | |
320 | ✗ | _measurementNoiseUnit == MeasurementNoiseUnit::meter2 | |
321 | ✗ | ? "Variance σ²" | |
322 | : "Standard deviation σ", | ||
323 | ✗ | size_t(id)) | |
324 | .c_str(), | ||
325 | ✗ | configWidth, unitWidth, &_measurementNoise, _measurementNoiseUnit, "m^2, m^2, m^2\0" | |
326 | "m, m, m\0\0", | ||
327 | 0, 0, "%.3e", ImGuiInputTextFlags_CharsScientific)) | ||
328 | { | ||
329 | ✗ | LOG_DEBUG("{}: measurementNoise changed to {}", nameId(), _measurementNoise); | |
330 | ✗ | LOG_DEBUG("{}: measurementNoiseUnit changed to {}", nameId(), fmt::underlying(_measurementNoiseUnit)); | |
331 | ✗ | flow::ApplyChanges(); | |
332 | } | ||
333 | ✗ | ImGui::TreePop(); | |
334 | } | ||
335 | |||
336 | // ########################################################################################################### | ||
337 | // Process Noise Covariance 𝐐 | ||
338 | // ########################################################################################################### | ||
339 | ✗ | ImGui::SetNextItemOpen(true, ImGuiCond_FirstUseEver); | |
340 | ✗ | if (ImGui::TreeNode(fmt::format("Q - Process Noise ##{}", size_t(id)).c_str())) | |
341 | { | ||
342 | ✗ | if (gui::widgets::InputDoubleWithUnit(fmt::format("({})##{}", | |
343 | ✗ | _processNoiseUnit == ProcessNoiseUnit::meter2 | |
344 | ✗ | ? "Variance σ²" | |
345 | : "Standard deviation σ", | ||
346 | ✗ | size_t(id)) | |
347 | .c_str(), | ||
348 | ✗ | configWidth, unitWidth, &_processNoise, _processNoiseUnit, "m^2, m^2, m^2\0" | |
349 | "m, m, m\0\0", | ||
350 | 0, 0, "%.3e", ImGuiInputTextFlags_CharsScientific)) | ||
351 | { | ||
352 | ✗ | LOG_DEBUG("{}: processNoise changed to {}", nameId(), _processNoise); | |
353 | ✗ | LOG_DEBUG("{}: processNoiseUnit changed to {}", nameId(), fmt::underlying(_processNoiseUnit)); | |
354 | ✗ | flow::ApplyChanges(); | |
355 | } | ||
356 | ✗ | ImGui::TreePop(); | |
357 | } | ||
358 | |||
359 | // ########################################################################################################### | ||
360 | // Initial State Estimate 𝐱0 | ||
361 | // ########################################################################################################### | ||
362 | ✗ | ImGui::SetNextItemOpen(true, ImGuiCond_FirstUseEver); | |
363 | ✗ | if (ImGui::TreeNode(fmt::format("x0 - Initial State##{}", size_t(id)).c_str())) | |
364 | { | ||
365 | ✗ | Eigen::Vector3d llaPos = trafo::ecef2lla_WGS84(_initialState.e_position); | |
366 | ✗ | llaPos.block<2, 1>(0, 0) = rad2deg(llaPos.block<2, 1>(0, 0)); | |
367 | |||
368 | ✗ | ImGui::SetNextItemWidth(configWidth); | |
369 | ✗ | if (ImGui::InputDouble3(fmt::format("Position ECEF (m)##{}", "m", | |
370 | ✗ | size_t(id)) | |
371 | .c_str(), | ||
372 | _initialState.e_position.data(), "%.4f", ImGuiInputTextFlags_CharsScientific)) | ||
373 | { | ||
374 | ✗ | LOG_DEBUG("{}: e_position changed to {}", nameId(), _initialState.e_position); | |
375 | ✗ | flow::ApplyChanges(); | |
376 | } | ||
377 | |||
378 | ✗ | ImGui::SetNextItemWidth(configWidth); | |
379 | ✗ | if (ImGui::InputDouble3(fmt::format("Position LLA ##{}", "m", | |
380 | ✗ | size_t(id)) | |
381 | .c_str(), | ||
382 | llaPos.data(), "%.8f°", ImGuiInputTextFlags_CharsScientific)) | ||
383 | { | ||
384 | ✗ | llaPos.block<2, 1>(0, 0) = deg2rad(llaPos.block<2, 1>(0, 0)); | |
385 | ✗ | _initialState.e_position = trafo::lla2ecef_WGS84(llaPos); | |
386 | ✗ | LOG_DEBUG("{}: e_position changed to {}", nameId(), _initialState.e_position); | |
387 | ✗ | flow::ApplyChanges(); | |
388 | } | ||
389 | |||
390 | ✗ | ImGui::SetNextItemWidth(configWidth); | |
391 | ✗ | if (ImGui::InputDouble3(fmt::format("Velocity (m/s)##{}", "m", | |
392 | ✗ | size_t(id)) | |
393 | .c_str(), | ||
394 | _state.e_velocity.data(), "%.3e", ImGuiInputTextFlags_CharsScientific)) | ||
395 | { | ||
396 | ✗ | LOG_DEBUG("{}: e_position changed to {}", nameId(), _state.e_velocity); | |
397 | ✗ | flow::ApplyChanges(); | |
398 | } | ||
399 | |||
400 | ✗ | if (_estimateBias) | |
401 | { | ||
402 | ✗ | ImGui::SetNextItemWidth(configWidth); | |
403 | ✗ | if (ImGui::InputDouble(fmt::format("Bias (m)##{}", "m", | |
404 | ✗ | size_t(id)) | |
405 | .c_str(), | ||
406 | &_state.bias, 0, 0, "%.3e", ImGuiInputTextFlags_CharsScientific)) | ||
407 | { | ||
408 | ✗ | LOG_DEBUG("{}: bias changed to {}", nameId(), _state.bias); | |
409 | ✗ | flow::ApplyChanges(); | |
410 | } | ||
411 | } | ||
412 | |||
413 | ✗ | ImGui::TreePop(); | |
414 | } | ||
415 | |||
416 | // ########################################################################################################### | ||
417 | // 𝐏 Error covariance matrix | ||
418 | // ########################################################################################################### | ||
419 | |||
420 | ✗ | ImGui::SetNextItemOpen(true, ImGuiCond_FirstUseEver); | |
421 | ✗ | if (ImGui::TreeNode(fmt::format("P - Error covariance matrix (init)##{}", size_t(id)).c_str())) | |
422 | { | ||
423 | ✗ | if (gui::widgets::InputDouble3WithUnit(fmt::format("Position covariance ({})##{}", | |
424 | ✗ | _initCovariancePositionUnit == InitCovariancePositionUnit::meter2 | |
425 | ✗ | ? "Variance σ²" | |
426 | : "Standard deviation σ", | ||
427 | ✗ | size_t(id)) | |
428 | .c_str(), | ||
429 | ✗ | configWidth, unitWidth, _initCovariancePosition.data(), _initCovariancePositionUnit, "m^2, m^2, m^2\0" | |
430 | "m, m, m\0\0", | ||
431 | "%.2e", ImGuiInputTextFlags_CharsScientific)) | ||
432 | { | ||
433 | ✗ | LOG_DEBUG("{}: initCovariancePosition changed to {}", nameId(), _initCovariancePosition); | |
434 | ✗ | LOG_DEBUG("{}: initCovariancePositionUnit changed to {}", nameId(), fmt::underlying(_initCovariancePositionUnit)); | |
435 | ✗ | flow::ApplyChanges(); | |
436 | } | ||
437 | |||
438 | ✗ | if (gui::widgets::InputDouble3WithUnit(fmt::format("Velocity covariance ({})##{}", | |
439 | ✗ | _initCovarianceVelocityUnit == InitCovarianceVelocityUnit::m2_s2 | |
440 | ✗ | ? "Variance σ²" | |
441 | : "Standard deviation σ", | ||
442 | ✗ | size_t(id)) | |
443 | .c_str(), | ||
444 | ✗ | configWidth, unitWidth, _initCovarianceVelocity.data(), _initCovarianceVelocityUnit, "m^2/s^2\0" | |
445 | "m/s\0\0", | ||
446 | "%.2e", ImGuiInputTextFlags_CharsScientific)) | ||
447 | { | ||
448 | ✗ | LOG_DEBUG("{}: initCovarianceVelocity changed to {}", nameId(), _initCovarianceVelocity); | |
449 | ✗ | LOG_DEBUG("{}: initCovarianceVelocityUnit changed to {}", nameId(), fmt::underlying(_initCovarianceVelocityUnit)); | |
450 | ✗ | flow::ApplyChanges(); | |
451 | } | ||
452 | |||
453 | ✗ | if (_estimateBias) | |
454 | { | ||
455 | ✗ | if (gui::widgets::InputDoubleWithUnit(fmt::format("Bias covariance ({})##{}", | |
456 | ✗ | _initCovarianceBiasUnit == InitCovarianceBiasUnit::meter2 | |
457 | ✗ | ? "Variance σ²" | |
458 | : "Standard deviation σ", | ||
459 | ✗ | size_t(id)) | |
460 | .c_str(), | ||
461 | ✗ | configWidth, unitWidth, &_initCovarianceBias, _initCovarianceBiasUnit, "m^2\0" | |
462 | "m\0\0", | ||
463 | 0, 0, "%.2e", ImGuiInputTextFlags_CharsScientific)) | ||
464 | { | ||
465 | ✗ | LOG_DEBUG("{}: initCovarianceBias changed to {}", nameId(), _initCovarianceBias); | |
466 | ✗ | LOG_DEBUG("{}: initCovarianceBiasUnit changed to {}", nameId(), fmt::underlying(_initCovarianceBiasUnit)); | |
467 | ✗ | flow::ApplyChanges(); | |
468 | } | ||
469 | } | ||
470 | |||
471 | ✗ | ImGui::TreePop(); | |
472 | } | ||
473 | } | ||
474 | ✗ | ImGui::Separator(); | |
475 | // ########################################################################################################### | ||
476 | // Estimate Bias | ||
477 | // ########################################################################################################### | ||
478 | ✗ | if (ImGui::Checkbox(fmt::format("Estimate Bias##{}", size_t(id)).c_str(), &_estimateBias)) | |
479 | { | ||
480 | ✗ | if (_estimateBias) | |
481 | { | ||
482 | ✗ | LOG_DEBUG("{}: Estimate Bias changed to Yes", nameId()); | |
483 | ✗ | _numStates = 7; | |
484 | } | ||
485 | else | ||
486 | { | ||
487 | ✗ | LOG_DEBUG("{}: Estimate Bias changed to No", nameId()); | |
488 | ✗ | _numStates = 6; | |
489 | } | ||
490 | } | ||
491 | ✗ | flow::ApplyChanges(); | |
492 | // ########################################################################################################### | ||
493 | // Weighted Solution | ||
494 | // ########################################################################################################### | ||
495 | ✗ | if (ImGui::Checkbox(fmt::format("Weighted Solution##{}", size_t(id)).c_str(), &_weightedSolution)) | |
496 | { | ||
497 | ✗ | if (_weightedSolution) | |
498 | { | ||
499 | ✗ | LOG_DEBUG("{}: Weighted Solution changed to Yes", nameId()); | |
500 | } | ||
501 | else | ||
502 | { | ||
503 | ✗ | LOG_DEBUG("{}: Weighted Solution changed to No", nameId()); | |
504 | } | ||
505 | } | ||
506 | ✗ | flow::ApplyChanges(); | |
507 | |||
508 | // ########################################################################################################### | ||
509 | // Use Initial Values | ||
510 | // ########################################################################################################### | ||
511 | ✗ | if (_solutionMode == SolutionMode::LSQ) | |
512 | { | ||
513 | ✗ | if (ImGui::Checkbox(fmt::format("Use Initial Values##{}", size_t(id)).c_str(), &_useInitialValues)) | |
514 | { | ||
515 | ✗ | if (_useInitialValues) | |
516 | { | ||
517 | ✗ | LOG_DEBUG("{}: Use Initial Values changed to Yes", nameId()); | |
518 | } | ||
519 | else | ||
520 | { | ||
521 | ✗ | LOG_DEBUG("{}: Use Initial Values changed to No", nameId()); | |
522 | } | ||
523 | } | ||
524 | } | ||
525 | ✗ | flow::ApplyChanges(); | |
526 | ✗ | } | |
527 | |||
528 | ✗ | [[nodiscard]] json NAV::WiFiPositioning::save() const | |
529 | { | ||
530 | LOG_TRACE("{}: called", nameId()); | ||
531 | |||
532 | ✗ | json j; | |
533 | |||
534 | ✗ | j["nWifiInputPins"] = _nWifiInputPins; | |
535 | ✗ | j["numStates"] = _numStates; | |
536 | ✗ | j["numMeasurements"] = _numMeasurements; | |
537 | ✗ | j["frame"] = _frame; | |
538 | ✗ | j["estimateBias"] = _estimateBias; | |
539 | ✗ | j["weightedSolution"] = _weightedSolution; | |
540 | ✗ | j["useInitialValues"] = _useInitialValues; | |
541 | ✗ | j["deviceMacAddresses"] = _deviceMacAddresses; | |
542 | ✗ | j["devicePositions"] = _devicePositions; | |
543 | ✗ | j["deviceBias"] = _deviceBias; | |
544 | ✗ | j["deviceScale"] = _deviceScale; | |
545 | ✗ | j["numOfDevices"] = _numOfDevices; | |
546 | ✗ | j["solutionMode"] = _solutionMode; | |
547 | ✗ | j["e_position"] = _state.e_position; | |
548 | ✗ | j["e_velocity"] = _state.e_velocity; | |
549 | ✗ | j["bias"] = _state.bias; | |
550 | ✗ | j["intialStatePosition"] = _initialState.e_position; | |
551 | ✗ | j["initialStateVelocity"] = _initialState.e_velocity; | |
552 | ✗ | j["initialStateBias"] = _initialState.bias; | |
553 | ✗ | j["initCovariancePosition"] = _initCovariancePosition; | |
554 | ✗ | j["initCovariancePositionUnit"] = _initCovariancePositionUnit; | |
555 | ✗ | j["initCovarianceVelocity"] = _initCovarianceVelocity; | |
556 | ✗ | j["initCovarianceVelocityUnit"] = _initCovarianceVelocityUnit; | |
557 | ✗ | j["initCovarianceBias"] = _initCovarianceBias; | |
558 | ✗ | j["initCovarianceBiasUnit"] = _initCovarianceBiasUnit; | |
559 | ✗ | j["measurementNoise"] = _measurementNoise; | |
560 | ✗ | j["measurementNoiseUnit"] = _measurementNoiseUnit; | |
561 | ✗ | j["processNoise"] = _processNoise; | |
562 | ✗ | j["processNoiseUnit"] = _processNoiseUnit; | |
563 | |||
564 | ✗ | return j; | |
565 | ✗ | } | |
566 | |||
567 | ✗ | void NAV::WiFiPositioning::restore(json const& j) | |
568 | { | ||
569 | LOG_TRACE("{}: called", nameId()); | ||
570 | |||
571 | ✗ | if (j.contains("nWifiInputPins")) | |
572 | { | ||
573 | ✗ | j.at("nWifiInputPins").get_to(_nWifiInputPins); | |
574 | ✗ | updateNumberOfInputPins(); | |
575 | } | ||
576 | ✗ | if (j.contains("numStates")) | |
577 | { | ||
578 | ✗ | j.at("numStates").get_to(_numStates); | |
579 | } | ||
580 | ✗ | if (j.contains("numMeasurements")) | |
581 | { | ||
582 | ✗ | j.at("numMeasurements").get_to(_numMeasurements); | |
583 | } | ||
584 | ✗ | if (j.contains("frame")) | |
585 | { | ||
586 | ✗ | j.at("frame").get_to(_frame); | |
587 | } | ||
588 | ✗ | if (j.contains("estimateBias")) | |
589 | { | ||
590 | ✗ | j.at("estimateBias").get_to(_estimateBias); | |
591 | } | ||
592 | ✗ | if (j.contains("weightedSolution")) | |
593 | { | ||
594 | ✗ | j.at("weightedSolution").get_to(_weightedSolution); | |
595 | } | ||
596 | ✗ | if (j.contains("useInitialValues")) | |
597 | { | ||
598 | ✗ | j.at("useInitialValues").get_to(_useInitialValues); | |
599 | } | ||
600 | ✗ | if (j.contains("deviceMacAddresses")) | |
601 | { | ||
602 | ✗ | j.at("deviceMacAddresses").get_to(_deviceMacAddresses); | |
603 | } | ||
604 | ✗ | if (j.contains("devicePositions")) | |
605 | { | ||
606 | ✗ | j.at("devicePositions").get_to(_devicePositions); | |
607 | } | ||
608 | ✗ | if (j.contains("deviceBias")) | |
609 | { | ||
610 | ✗ | j.at("deviceBias").get_to(_deviceBias); | |
611 | } | ||
612 | ✗ | if (j.contains("deviceScale")) | |
613 | { | ||
614 | ✗ | j.at("deviceScale").get_to(_deviceScale); | |
615 | } | ||
616 | ✗ | if (j.contains("numOfDevices")) | |
617 | { | ||
618 | ✗ | j.at("numOfDevices").get_to(_numOfDevices); | |
619 | } | ||
620 | ✗ | if (j.contains("solutionMode")) | |
621 | { | ||
622 | ✗ | j.at("solutionMode").get_to(_solutionMode); | |
623 | } | ||
624 | ✗ | if (j.contains("e_position")) | |
625 | { | ||
626 | ✗ | j.at("e_position").get_to(_state.e_position); | |
627 | } | ||
628 | ✗ | if (j.contains("e_velocity")) | |
629 | { | ||
630 | ✗ | j.at("e_velocity").get_to(_state.e_velocity); | |
631 | } | ||
632 | ✗ | if (j.contains("bias")) | |
633 | { | ||
634 | ✗ | j.at("bias").get_to(_state.bias); | |
635 | } | ||
636 | ✗ | if (j.contains("intialStatePosition")) | |
637 | { | ||
638 | ✗ | j.at("intialStatePosition").get_to(_initialState.e_position); | |
639 | } | ||
640 | ✗ | if (j.contains("initialStateVelocity")) | |
641 | { | ||
642 | ✗ | j.at("initialStateVelocity").get_to(_initialState.e_velocity); | |
643 | } | ||
644 | ✗ | if (j.contains("initialStateBias")) | |
645 | { | ||
646 | ✗ | j.at("initialStateBias").get_to(_initialState.bias); | |
647 | } | ||
648 | ✗ | if (j.contains("initCovariancePosition")) | |
649 | { | ||
650 | ✗ | j.at("initCovariancePosition").get_to(_initCovariancePosition); | |
651 | } | ||
652 | ✗ | if (j.contains("initCovariancePositionUnit")) | |
653 | { | ||
654 | ✗ | j.at("initCovariancePositionUnit").get_to(_initCovariancePositionUnit); | |
655 | } | ||
656 | ✗ | if (j.contains("initCovarianceVelocity")) | |
657 | { | ||
658 | ✗ | j.at("initCovarianceVelocity").get_to(_initCovarianceVelocity); | |
659 | } | ||
660 | ✗ | if (j.contains("initCovarianceVelocityUnit")) | |
661 | { | ||
662 | ✗ | j.at("initCovarianceVelocityUnit").get_to(_initCovarianceVelocityUnit); | |
663 | } | ||
664 | ✗ | if (j.contains("initCovarianceBias")) | |
665 | { | ||
666 | ✗ | j.at("initCovarianceBias").get_to(_initCovarianceBias); | |
667 | } | ||
668 | ✗ | if (j.contains("initCovarianceBiasUnit")) | |
669 | { | ||
670 | ✗ | j.at("initCovarianceBiasUnit").get_to(_initCovarianceBiasUnit); | |
671 | } | ||
672 | ✗ | if (j.contains("measurementNoise")) | |
673 | { | ||
674 | ✗ | j.at("measurementNoise").get_to(_measurementNoise); | |
675 | } | ||
676 | ✗ | if (j.contains("measurementNoiseUnit")) | |
677 | { | ||
678 | ✗ | j.at("measurementNoiseUnit").get_to(_measurementNoiseUnit); | |
679 | } | ||
680 | ✗ | if (j.contains("processNoise")) | |
681 | { | ||
682 | ✗ | j.at("processNoise").get_to(_processNoise); | |
683 | } | ||
684 | ✗ | if (j.contains("processNoiseUnit")) | |
685 | { | ||
686 | ✗ | j.at("processNoiseUnit").get_to(_processNoiseUnit); | |
687 | } | ||
688 | ✗ | } | |
689 | |||
690 | ✗ | bool NAV::WiFiPositioning::initialize() | |
691 | { | ||
692 | LOG_TRACE("{}: called", nameId()); | ||
693 | |||
694 | ✗ | _kalmanFilter = KalmanFilter{ _numStates, _numMeasurements }; | |
695 | |||
696 | // Initial state | ||
697 | ✗ | _state.e_position = _initialState.e_position; | |
698 | ✗ | _state.e_velocity = _initialState.e_velocity; | |
699 | ✗ | if (_estimateBias) | |
700 | { | ||
701 | ✗ | _state.bias = _initialState.bias; | |
702 | } | ||
703 | |||
704 | // Initial Covariance of the velocity in [m²/s²] | ||
705 | ✗ | Eigen::Vector3d variance_vel = Eigen::Vector3d::Zero(); | |
706 | ✗ | if (_initCovarianceVelocityUnit == InitCovarianceVelocityUnit::m2_s2) | |
707 | { | ||
708 | ✗ | variance_vel = _initCovarianceVelocity; | |
709 | } | ||
710 | ✗ | else if (_initCovarianceVelocityUnit == InitCovarianceVelocityUnit::m_s) | |
711 | { | ||
712 | ✗ | variance_vel = _initCovarianceVelocity.array().pow(2); | |
713 | } | ||
714 | |||
715 | // Initial Covariance of the position in [m²] | ||
716 | ✗ | Eigen::Vector3d variance_pos = Eigen::Vector3d::Zero(); | |
717 | ✗ | if (_initCovariancePositionUnit == InitCovariancePositionUnit::meter2) | |
718 | { | ||
719 | ✗ | variance_pos = _initCovariancePosition; | |
720 | } | ||
721 | ✗ | else if (_initCovariancePositionUnit == InitCovariancePositionUnit::meter) | |
722 | { | ||
723 | ✗ | variance_pos = _initCovariancePosition.array().pow(2); | |
724 | } | ||
725 | |||
726 | // Initial Covariance of the bias in [m²] | ||
727 | ✗ | double variance_bias = 0.0; | |
728 | ✗ | if (_initCovarianceBiasUnit == InitCovarianceBiasUnit::meter2) | |
729 | { | ||
730 | ✗ | variance_bias = _initCovarianceBias; | |
731 | } | ||
732 | ✗ | else if (_initCovarianceBiasUnit == InitCovarianceBiasUnit::meter) | |
733 | { | ||
734 | ✗ | variance_bias = std::pow(_initCovarianceBias, 2); | |
735 | } | ||
736 | ✗ | if (_estimateBias) | |
737 | { | ||
738 | ✗ | _kalmanFilter.P.diagonal() << variance_pos, variance_vel, variance_bias; | |
739 | } | ||
740 | else | ||
741 | { | ||
742 | ✗ | _kalmanFilter.P.diagonal() << variance_pos, variance_vel; | |
743 | } | ||
744 | ✗ | if (_estimateBias) | |
745 | { | ||
746 | ✗ | _kalmanFilter.x << _state.e_position, _state.e_velocity, _state.bias; | |
747 | } | ||
748 | else | ||
749 | { | ||
750 | ✗ | _kalmanFilter.x << _state.e_position, _state.e_velocity; | |
751 | } | ||
752 | ✗ | if (_measurementNoiseUnit == MeasurementNoiseUnit::meter2) | |
753 | { | ||
754 | ✗ | _kalmanFilter.R << _measurementNoise; | |
755 | } | ||
756 | ✗ | else if (_measurementNoiseUnit == MeasurementNoiseUnit::meter) | |
757 | { | ||
758 | ✗ | _kalmanFilter.R << std::pow(_measurementNoise, 2); | |
759 | } | ||
760 | |||
761 | ✗ | LOG_DEBUG("WiFiPositioning initialized"); | |
762 | |||
763 | ✗ | return true; | |
764 | } | ||
765 | |||
766 | ✗ | void NAV::WiFiPositioning::deinitialize() | |
767 | { | ||
768 | LOG_TRACE("{}: called", nameId()); | ||
769 | ✗ | } | |
770 | |||
771 | 112 | void NAV::WiFiPositioning::updateNumberOfInputPins() | |
772 | { | ||
773 |
2/2✓ Branch 1 taken 112 times.
✓ Branch 2 taken 112 times.
|
224 | while (inputPins.size() < _nWifiInputPins) |
774 | { | ||
775 |
5/10✓ Branch 1 taken 112 times.
✗ Branch 2 not taken.
✓ Branch 5 taken 112 times.
✗ Branch 6 not taken.
✓ Branch 9 taken 112 times.
✗ Branch 10 not taken.
✓ Branch 13 taken 112 times.
✓ Branch 14 taken 112 times.
✗ Branch 18 not taken.
✗ Branch 19 not taken.
|
336 | nm::CreateInputPin(this, NAV::WiFiObs::type().c_str(), Pin::Type::Flow, { NAV::WiFiObs::type() }, &WiFiPositioning::recvWiFiObs); |
776 | } | ||
777 |
1/2✗ Branch 1 not taken.
✓ Branch 2 taken 112 times.
|
112 | while (inputPins.size() > _nWifiInputPins) |
778 | { | ||
779 | ✗ | nm::DeleteInputPin(inputPins.back()); | |
780 | } | ||
781 | 224 | } | |
782 | |||
783 | ✗ | void NAV::WiFiPositioning::recvWiFiObs(NAV::InputPin::NodeDataQueue& queue, size_t /* pinIdx */) | |
784 | { | ||
785 | ✗ | auto obs = std::static_pointer_cast<const WiFiObs>(queue.extract_front()); | |
786 | ✗ | auto it = std::ranges::find(_deviceMacAddresses, obs->macAddress); | |
787 | ✗ | if (it != _deviceMacAddresses.end()) // Check if the MAC address is in the list | |
788 | { | ||
789 | // Get the index of the found element | ||
790 | ✗ | auto index = static_cast<size_t>(std::distance(_deviceMacAddresses.begin(), it)); | |
791 | |||
792 | // Check if a device with the same position already exists and update the distance | ||
793 | ✗ | bool deviceExists = false; | |
794 | ✗ | for (auto& device : _devices) | |
795 | { | ||
796 | ✗ | if (_frame == Frame::ECEF) | |
797 | { | ||
798 | ✗ | if (device.position == _devicePositions.at(index)) | |
799 | { | ||
800 | ✗ | deviceExists = true; | |
801 | ✗ | device.distance = obs->distance * _deviceScale.at(index) + _deviceBias.at(index); | |
802 | ✗ | device.distanceStd = obs->distanceStd * _deviceScale.at(index); | |
803 | ✗ | device.time = obs->insTime; | |
804 | ✗ | break; | |
805 | } | ||
806 | } | ||
807 | ✗ | else if (_frame == Frame::LLA) | |
808 | { | ||
809 | ✗ | Eigen::Vector3d ecefPos = _devicePositions.at(index); | |
810 | ✗ | ecefPos.block<2, 1>(0, 0) = deg2rad(ecefPos.block<2, 1>(0, 0)); | |
811 | ✗ | ecefPos = trafo::lla2ecef_WGS84(ecefPos); | |
812 | ✗ | if (device.position == ecefPos) | |
813 | { | ||
814 | ✗ | deviceExists = true; | |
815 | ✗ | device.distance = obs->distance * _deviceScale.at(index) + _deviceBias.at(index); | |
816 | ✗ | device.distanceStd = obs->distanceStd * _deviceScale.at(index); | |
817 | ✗ | device.time = obs->insTime; | |
818 | ✗ | break; | |
819 | } | ||
820 | } | ||
821 | } | ||
822 | |||
823 | // If the device does not exist, add it to the list | ||
824 | ✗ | if (!deviceExists) | |
825 | { | ||
826 | ✗ | if (_frame == Frame::LLA) | |
827 | { | ||
828 | ✗ | Eigen::Vector3d llaPos = _devicePositions.at(index); | |
829 | ✗ | llaPos.block<2, 1>(0, 0) = deg2rad(llaPos.block<2, 1>(0, 0)); | |
830 | ✗ | _devices.push_back({ trafo::lla2ecef_WGS84(llaPos), obs->insTime, obs->distance * _deviceScale.at(index) + _deviceBias.at(index), obs->distanceStd * _deviceScale.at(index) }); | |
831 | } | ||
832 | ✗ | else if (_frame == Frame::ECEF) | |
833 | { | ||
834 | ✗ | _devices.push_back({ _devicePositions.at(index), obs->insTime, obs->distance * _deviceScale.at(index) + _deviceBias.at(index), obs->distanceStd * _deviceScale.at(index) }); | |
835 | } | ||
836 | } | ||
837 | |||
838 | // Calculate the solution | ||
839 | ✗ | auto wifiPositioningSolution = std::make_shared<NAV::WiFiPositioningSolution>(); | |
840 | ✗ | wifiPositioningSolution->insTime = obs->insTime; | |
841 | // Least Squares | ||
842 | ✗ | if (_solutionMode == SolutionMode::LSQ) | |
843 | { | ||
844 | ✗ | if (_devices.size() == _numOfDevices) | |
845 | { | ||
846 | ✗ | LeastSquaresResult<Eigen::VectorXd, Eigen::MatrixXd> lsqSolution = WiFiPositioning::lsqSolution(); | |
847 | ✗ | wifiPositioningSolution->setPositionAndStdDev_e(lsqSolution.solution.block<3, 1>(0, 0), lsqSolution.variance.block<3, 3>(0, 0).cwiseSqrt()); | |
848 | ✗ | wifiPositioningSolution->setPosCovarianceMatrix_e(lsqSolution.variance.block<3, 3>(0, 0)); | |
849 | ✗ | if (_estimateBias) | |
850 | { | ||
851 | ✗ | wifiPositioningSolution->bias = _state.bias; | |
852 | ✗ | wifiPositioningSolution->biasStdev = lsqSolution.variance(3, 3); | |
853 | } | ||
854 | ✗ | invokeCallbacks(OUTPUT_PORT_INDEX_WIFISOL, wifiPositioningSolution); | |
855 | ✗ | } | |
856 | } | ||
857 | // Kalman Filter | ||
858 | ✗ | else if (_solutionMode == SolutionMode::KF) | |
859 | { | ||
860 | ✗ | WiFiPositioning::kfSolution(); | |
861 | ✗ | wifiPositioningSolution->setPositionAndStdDev_e(_kalmanFilter.x.block<3, 1>(0, 0), _kalmanFilter.P.block<3, 3>(0, 0).cwiseSqrt()); | |
862 | ✗ | if (_estimateBias) | |
863 | { | ||
864 | ✗ | wifiPositioningSolution->bias = _kalmanFilter.x(6); | |
865 | ✗ | wifiPositioningSolution->biasStdev = _kalmanFilter.P(6, 6); | |
866 | } | ||
867 | ✗ | wifiPositioningSolution->setVelocityAndStdDev_e(_kalmanFilter.x.block<3, 1>(3, 0), _kalmanFilter.P.block<3, 3>(3, 3).cwiseSqrt()); | |
868 | ✗ | wifiPositioningSolution->setPosVelCovarianceMatrix_e(_kalmanFilter.P); | |
869 | ✗ | invokeCallbacks(OUTPUT_PORT_INDEX_WIFISOL, wifiPositioningSolution); | |
870 | } | ||
871 | |||
872 | ✗ | LOG_DEBUG("{}: Received distance to device {} at position {} with distance {}", nameId(), obs->macAddress, _devicePositions.at(index).transpose(), obs->distance); | |
873 | ✗ | } | |
874 | ✗ | } | |
875 | |||
876 | ✗ | NAV::LeastSquaresResult<Eigen::VectorXd, Eigen::MatrixXd> NAV::WiFiPositioning::lsqSolution() | |
877 | { | ||
878 | ✗ | LeastSquaresResult<Eigen::VectorXd, Eigen::MatrixXd> lsq; | |
879 | ✗ | int n = (_estimateBias) ? 4 : 3; // Number of unknowns | |
880 | |||
881 | // Check if the number of devices is sufficient to compute the position | ||
882 | ✗ | if ((_estimateBias && _devices.size() < 5) || (!_estimateBias && _devices.size() < 4)) | |
883 | { | ||
884 | ✗ | LOG_DEBUG("{}: Received less than {} observations. Can't compute position", nameId(), (_estimateBias ? 5 : 4)); | |
885 | ✗ | return lsq; | |
886 | } | ||
887 | |||
888 | ✗ | LOG_DEBUG("{}: Received {} observations", nameId(), _devices.size()); | |
889 | |||
890 | ✗ | Eigen::MatrixXd e_H = Eigen::MatrixXd::Zero(static_cast<int>(_devices.size()), n); | |
891 | ✗ | Eigen::MatrixXd W = Eigen::MatrixXd::Identity(static_cast<int>(_devices.size()), static_cast<int>(_devices.size())); | |
892 | ✗ | Eigen::VectorXd ddist = Eigen::VectorXd::Zero(static_cast<int>(_devices.size())); | |
893 | ✗ | size_t numMeasurements = _devices.size(); | |
894 | |||
895 | // Check if the initial position is NaN | ||
896 | ✗ | if (std::isnan(_state.e_position(0)) || std::isnan(_state.e_position(1)) || std::isnan(_state.e_position(2)) || _useInitialValues) | |
897 | { | ||
898 | ✗ | _state.e_position << _initialState.e_position; | |
899 | ✗ | if (_estimateBias) | |
900 | { | ||
901 | ✗ | _state.bias = _initialState.bias; | |
902 | } | ||
903 | } | ||
904 | |||
905 | // Iteratively solve the linear least squares problem | ||
906 | ✗ | for (size_t o = 0; o < 15; o++) | |
907 | { | ||
908 | LOG_DATA("{}: Iteration {}", nameId(), o); | ||
909 | ✗ | for (size_t i = 0; i < numMeasurements; i++) | |
910 | { | ||
911 | // Calculate the distance between the device and the estimated position | ||
912 | ✗ | double distEst = (_devices.at(i).position - _state.e_position).norm(); | |
913 | ✗ | if (_estimateBias) | |
914 | { | ||
915 | ✗ | distEst += _state.bias; | |
916 | } | ||
917 | |||
918 | // Calculate the residual vector | ||
919 | ✗ | ddist(static_cast<int>(i)) = _devices.at(i).distance - distEst; | |
920 | |||
921 | ✗ | Eigen::Vector3d e_lineOfSightUnitVector = Eigen::Vector3d::Zero(); | |
922 | ✗ | if ((_state.e_position - _devices.at(i).position).norm() != 0) // Check if it is the same position | |
923 | { | ||
924 | ✗ | e_lineOfSightUnitVector = e_calcLineOfSightUnitVector(_state.e_position, _devices.at(i).position); | |
925 | } | ||
926 | |||
927 | // Calculate the design matrix | ||
928 | ✗ | e_H.block<1, 3>(static_cast<int>(i), 0) = -e_lineOfSightUnitVector; | |
929 | ✗ | if (_estimateBias) | |
930 | { | ||
931 | ✗ | e_H(static_cast<int>(i), 3) = 1; | |
932 | } | ||
933 | |||
934 | // Calculate the weight matrix | ||
935 | ✗ | if (_weightedSolution) | |
936 | { | ||
937 | ✗ | W(static_cast<int>(i), static_cast<int>(i)) = 1 / std::pow(_devices.at(i).distanceStd, 2); | |
938 | } | ||
939 | } | ||
940 | // Solve the linear least squares problem | ||
941 | ✗ | lsq = solveWeightedLinearLeastSquaresUncertainties(e_H, W, ddist); | |
942 | |||
943 | ✗ | if (_estimateBias) | |
944 | { | ||
945 | LOG_DATA("{}: [{}] dx (lsq) {}, {}, {}, {}", nameId(), o, lsq.solution(0), lsq.solution(1), lsq.solution(2), lsq.solution(3)); | ||
946 | LOG_DATA("{}: [{}] stdev_dx (lsq)\n{}", nameId(), o, lsq.variance.cwiseSqrt()); | ||
947 | } | ||
948 | else | ||
949 | { | ||
950 | LOG_DATA("{}: [{}] dx (lsq) {}, {}, {}", nameId(), o, lsq.solution(0), lsq.solution(1), lsq.solution(2)); | ||
951 | LOG_DATA("{}: [{}] stdev_dx (lsq)\n{}", nameId(), o, lsq.variance.cwiseSqrt()); | ||
952 | } | ||
953 | |||
954 | // Update the estimated position | ||
955 | ✗ | _state.e_position += lsq.solution.block<3, 1>(0, 0); | |
956 | |||
957 | // Update the estimated bias | ||
958 | ✗ | if (_estimateBias) | |
959 | { | ||
960 | ✗ | _state.bias += lsq.solution(3); | |
961 | } | ||
962 | |||
963 | ✗ | bool solInaccurate = pow(lsq.solution.norm(), 2) > 1e-3; | |
964 | ✗ | if (!solInaccurate) // Solution is accurate enough | |
965 | { | ||
966 | ✗ | lsq.solution.block<3, 1>(0, 0) = _state.e_position; | |
967 | ✗ | break; | |
968 | } | ||
969 | ✗ | if (o == 14) | |
970 | { | ||
971 | ✗ | LOG_DEBUG("{}: Solution did not converge", nameId()); | |
972 | ✗ | lsq.solution.setConstant(std::numeric_limits<double>::quiet_NaN()); | |
973 | ✗ | lsq.variance.setConstant(std::numeric_limits<double>::quiet_NaN()); | |
974 | ✗ | if (_estimateBias) | |
975 | { | ||
976 | ✗ | _state.bias = std::numeric_limits<double>::quiet_NaN(); | |
977 | } | ||
978 | ✗ | _state.e_position = _initialState.e_position; | |
979 | ✗ | if (_estimateBias) | |
980 | { | ||
981 | ✗ | _state.bias = _initialState.bias; | |
982 | } | ||
983 | } | ||
984 | } | ||
985 | |||
986 | ✗ | _devices.clear(); | |
987 | ✗ | LOG_DEBUG("{}: Position: {}", nameId(), _state.e_position.transpose()); | |
988 | |||
989 | ✗ | return lsq; | |
990 | ✗ | } | |
991 | |||
992 | ✗ | void NAV::WiFiPositioning::kfSolution() | |
993 | { | ||
994 | ✗ | double tau_i = !_lastPredictTime.empty() | |
995 | ✗ | ? static_cast<double>((_devices.at(0).time - _lastPredictTime).count()) | |
996 | ✗ | : 0.0; | |
997 | |||
998 | // ########################################################################################################### | ||
999 | // Prediction | ||
1000 | // ########################################################################################################### | ||
1001 | |||
1002 | ✗ | _lastPredictTime = _devices.at(0).time; | |
1003 | ✗ | if (tau_i > 0) | |
1004 | { | ||
1005 | // Transition matrix | ||
1006 | ✗ | Eigen::MatrixXd F = Eigen::MatrixXd::Zero(_numStates, _numStates); | |
1007 | ✗ | F(0, 3) = 1; | |
1008 | ✗ | F(1, 4) = 1; | |
1009 | ✗ | F(2, 5) = 1; | |
1010 | ✗ | _kalmanFilter.Phi = transitionMatrix_Phi_Taylor(F, tau_i, 1); | |
1011 | |||
1012 | // Process noise covariance matrix | ||
1013 | ✗ | _kalmanFilter.Q.block(0, 0, 3, 3) = std::pow(tau_i, 3) / 3.0 * Eigen::Matrix3d::Identity(); | |
1014 | ✗ | _kalmanFilter.Q.block(3, 0, 3, 3) = std::pow(tau_i, 2) / 2.0 * Eigen::Matrix3d::Identity(); | |
1015 | ✗ | _kalmanFilter.Q.block(0, 3, 3, 3) = std::pow(tau_i, 2) / 2.0 * Eigen::Matrix3d::Identity(); | |
1016 | ✗ | _kalmanFilter.Q.block(3, 3, 3, 3) = tau_i * Eigen::Matrix3d::Identity(); | |
1017 | ✗ | if (_estimateBias) | |
1018 | { | ||
1019 | ✗ | _kalmanFilter.Q(6, 6) = tau_i; | |
1020 | } | ||
1021 | ✗ | if (_processNoiseUnit == ProcessNoiseUnit::meter2) | |
1022 | { | ||
1023 | ✗ | _kalmanFilter.Q *= _processNoise; | |
1024 | } | ||
1025 | ✗ | else if (_processNoiseUnit == ProcessNoiseUnit::meter) | |
1026 | { | ||
1027 | ✗ | _kalmanFilter.Q *= std::pow(_processNoise, 2); | |
1028 | } | ||
1029 | // Predict | ||
1030 | ✗ | _kalmanFilter.predict(); | |
1031 | ✗ | } | |
1032 | |||
1033 | // ########################################################################################################### | ||
1034 | // Update | ||
1035 | // ########################################################################################################### | ||
1036 | |||
1037 | // Measurement | ||
1038 | ✗ | double estimatedDistance = (_devices.at(0).position - _kalmanFilter.x.block<3, 1>(0, 0)).norm(); | |
1039 | ✗ | if (_estimateBias) | |
1040 | { | ||
1041 | ✗ | estimatedDistance += _kalmanFilter.x(6); | |
1042 | } | ||
1043 | ✗ | _kalmanFilter.z << _devices.at(0).distance - estimatedDistance; | |
1044 | ✗ | if (_weightedSolution) | |
1045 | { | ||
1046 | ✗ | _kalmanFilter.R << std::pow(_devices.at(0).distanceStd, 2); | |
1047 | } | ||
1048 | |||
1049 | // Design matrix | ||
1050 | ✗ | Eigen::MatrixXd H = Eigen::MatrixXd::Zero(1, _numStates); | |
1051 | ✗ | H.block<1, 3>(0, 0) = -e_calcLineOfSightUnitVector(_kalmanFilter.x.block<3, 1>(0, 0), _devices.at(0).position); | |
1052 | ✗ | if (_estimateBias) | |
1053 | { | ||
1054 | ✗ | H(0, 6) = 1; | |
1055 | } | ||
1056 | ✗ | _kalmanFilter.H << H; | |
1057 | |||
1058 | // Update | ||
1059 | ✗ | _kalmanFilter.correctWithMeasurementInnovation(); | |
1060 | |||
1061 | ✗ | _devices.clear(); | |
1062 | LOG_DATA("{}: Position: {}", nameId(), _kalmanFilter.x.block<3, 1>(0, 0).transpose()); | ||
1063 | LOG_DATA("{}: Velocity: {}", nameId(), _kalmanFilter.x.block<3, 1>(3, 0).transpose()); | ||
1064 | ✗ | } | |
1065 |