Generalized Kalman Filter class.
More...
|
void | correct () |
| Do a Measurement Update with a Measurement ๐ณ
|
|
void | correctWithMeasurementInnovation () |
| Do a Measurement Update with a Measurement Innovation ๐น๐ณ
|
|
| KalmanFilter ()=delete |
| Default constructor.
|
|
| KalmanFilter (int n, int m) |
| Constructor.
|
|
void | predict () |
| Do a Time Update.
|
|
void | setZero () |
| Sets all Vectors and matrices to 0.
|
|
|
static Eigen::MatrixXd | transitionMatrix (const Eigen::MatrixXd &F, double tau_s) |
| Updates the state transition matrix ๐ฝ limited to first order in ๐
๐โ
|
|
|
Eigen::MatrixXd | H |
| ๐ Measurement sensitivity Matrix
|
|
Eigen::MatrixXd | K |
| ๐ Kalman gain matrix
|
|
Eigen::MatrixXd | P |
| ๐ Error covariance matrix
|
|
Eigen::MatrixXd | Phi |
| ๐ฝ State transition matrix
|
|
Eigen::MatrixXd | Q |
| ๐ System/Process noise covariance matrix
|
|
Eigen::MatrixXd | R |
| ๐ = ๐ธ{๐ฐโ๐ฐโแต} Measurement noise covariance matrix
|
|
Eigen::MatrixXd | S |
| ๐ฆ Measurement prediction covariance matrix
|
|
Eigen::MatrixXd | x |
| xฬ State vector
|
|
Eigen::MatrixXd | z |
| ๐ณ Measurement vector
|
|
Generalized Kalman Filter class.
◆ KalmanFilter()
NAV::KalmanFilter::KalmanFilter |
( |
int | n, |
|
|
int | m ) |
|
inline |
Constructor.
- Parameters
-
[in] | n | Number of States |
[in] | m | Number of Measurements |
◆ correct()
void NAV::KalmanFilter::correct |
( |
| ) |
|
|
inline |
Do a Measurement Update with a Measurement ๐ณ
- Attention
- Update the Measurement sensitivity Matrix (๐), the Measurement noise covariance matrix (๐) and the Measurement vector (๐ณ) before calling this
- Note
- See P. Groves (2013) - Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems (ch. 3.2.2)
◆ correctWithMeasurementInnovation()
void NAV::KalmanFilter::correctWithMeasurementInnovation |
( |
| ) |
|
|
inline |
Do a Measurement Update with a Measurement Innovation ๐น๐ณ
- Attention
- Update the Measurement sensitivity Matrix (๐), the Measurement noise covariance matrix (๐) and the Measurement vector (๐ณ) before calling this
- Note
- See P. Groves (2013) - Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems (ch. 3.2.2)
-
See Brown & Hwang (2012) - Introduction to Random Signals and Applied Kalman Filtering (ch. 5.5 - figure 5.5)
◆ predict()
void NAV::KalmanFilter::predict |
( |
| ) |
|
|
inline |
Do a Time Update.
- Attention
- Update the State transition matrix (๐ฝ) and the Process noise covariance matrix (๐) before calling this
- Note
- See P. Groves (2013) - Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems (ch. 3.2.2)
◆ transitionMatrix()
static Eigen::MatrixXd NAV::KalmanFilter::transitionMatrix |
( |
const Eigen::MatrixXd & | F, |
|
|
double | tau_s ) |
|
inlinestatic |
Updates the state transition matrix ๐ฝ limited to first order in ๐
๐โ
- Parameters
-
[in] | F | System Matrix |
[in] | tau_s | time interval in [s] |
- Note
- See Groves (2013) chapter 14.2.4, equation (14.72)
The documentation for this class was generated from the following file: