0.2.0
Loading...
Searching...
No Matches
NAV::KalmanFilter Class Reference

Generalized Kalman Filter class. More...

Public Member Functions

void correct ()
 Do a Measurement Update with a Measurement ๐ณ
 
void correctWithMeasurementInnovation ()
 Do a Measurement Update with a Measurement Innovation ๐œน๐ณ
 
 KalmanFilter ()=delete
 Default constructor.
 
 KalmanFilter (int n, int m)
 Constructor.
 
void predict ()
 Do a Time Update.
 
void setZero ()
 Sets all Vectors and matrices to 0.
 

Static Public Member Functions

static Eigen::MatrixXd transitionMatrix (const Eigen::MatrixXd &F, double tau_s)
 Updates the state transition matrix ๐šฝ limited to first order in ๐…๐œโ‚›
 

Public Attributes

Eigen::MatrixXd H
 ๐‡ Measurement sensitivity Matrix
 
Eigen::MatrixXd K
 ๐Š Kalman gain matrix
 
Eigen::MatrixXd P
 ๐ Error covariance matrix
 
Eigen::MatrixXd Phi
 ๐šฝ State transition matrix
 
Eigen::MatrixXd Q
 ๐ System/Process noise covariance matrix
 
Eigen::MatrixXd R
 ๐‘ = ๐ธ{๐ฐโ‚˜๐ฐโ‚˜แต€} Measurement noise covariance matrix
 
Eigen::MatrixXd S
 ๐—ฆ Measurement prediction covariance matrix
 
Eigen::MatrixXd x
 xฬ‚ State vector
 
Eigen::MatrixXd z
 ๐ณ Measurement vector
 

Detailed Description

Generalized Kalman Filter class.

Constructor & Destructor Documentation

◆ KalmanFilter()

NAV::KalmanFilter::KalmanFilter ( int n,
int m )
inline

Constructor.

Parameters
[in]nNumber of States
[in]mNumber of Measurements

Member Function Documentation

◆ correct()

void NAV::KalmanFilter::correct ( )
inline

Do a Measurement Update with a Measurement ๐ณ

Attention
Update the Measurement sensitivity Matrix (๐‡), the Measurement noise covariance matrix (๐‘) and the Measurement vector (๐ณ) before calling this
Note
See P. Groves (2013) - Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems (ch. 3.2.2)

◆ correctWithMeasurementInnovation()

void NAV::KalmanFilter::correctWithMeasurementInnovation ( )
inline

Do a Measurement Update with a Measurement Innovation ๐œน๐ณ

Attention
Update the Measurement sensitivity Matrix (๐‡), the Measurement noise covariance matrix (๐‘) and the Measurement vector (๐ณ) before calling this
Note
See P. Groves (2013) - Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems (ch. 3.2.2)
See Brown & Hwang (2012) - Introduction to Random Signals and Applied Kalman Filtering (ch. 5.5 - figure 5.5)

◆ predict()

void NAV::KalmanFilter::predict ( )
inline

Do a Time Update.

Attention
Update the State transition matrix (๐šฝ) and the Process noise covariance matrix (๐) before calling this
Note
See P. Groves (2013) - Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems (ch. 3.2.2)

◆ transitionMatrix()

static Eigen::MatrixXd NAV::KalmanFilter::transitionMatrix ( const Eigen::MatrixXd & F,
double tau_s )
inlinestatic

Updates the state transition matrix ๐šฝ limited to first order in ๐…๐œโ‚›

Parameters
[in]FSystem Matrix
[in]tau_stime interval in [s]
Note
See Groves (2013) chapter 14.2.4, equation (14.72)

The documentation for this class was generated from the following file: