0.3.0
Loading...
Searching...
No Matches
CubicSpline.hpp
Go to the documentation of this file.
1// This file is part of INSTINCT, the INS Toolkit for Integrated
2// Navigation Concepts and Training by the Institute of Navigation of
3// the University of Stuttgart, Germany.
4//
5// This Source Code Form is subject to the terms of the Mozilla Public
6// License, v. 2.0. If a copy of the MPL was not distributed with this
7// file, You can obtain one at https://mozilla.org/MPL/2.0/.
8
14
15#pragma once
16
17#include <cstdint>
18#include <cstdio>
19#include <cassert>
20#include <cmath>
21#include <vector>
22#include <algorithm>
23#include <sstream>
24#include <string>
25#include <iostream>
26
27#include "util/Assert.h"
28
29namespace NAV
30{
31
33template<typename Scalar>
35{
36 public:
39 {
41 enum BoundaryType : uint8_t
42 {
46 };
48 Scalar value{ 0.0 };
49 };
50
52 CubicSpline() = default;
53
59 CubicSpline(const std::vector<Scalar>& X, const std::vector<Scalar>& Y,
60 BoundaryCondition leftBoundaryCondition = { BoundaryCondition::SecondDerivative, 0.0 },
61 BoundaryCondition rightBoundaryCondition = { BoundaryCondition::SecondDerivative, 0.0 })
62 : boundaryConditionLeft(leftBoundaryCondition), boundaryConditionRight(rightBoundaryCondition)
63 {
64 setPoints(X, Y);
65 }
66
70 void setBoundaries(BoundaryCondition leftBoundaryCondition, BoundaryCondition rightBoundaryCondition)
71 {
72 boundaryConditionLeft = leftBoundaryCondition;
73 boundaryConditionRight = rightBoundaryCondition;
74 }
75
79 void setPoints(const std::vector<Scalar>& x, const std::vector<Scalar>& y)
80 {
81 vals_x = x;
82 vals_y = y;
83 size_t n = x.size();
84
85 size_t n_upper = (boundaryConditionLeft.type == BoundaryCondition::NotAKnot) ? 2 : 1;
86 size_t n_lower = (boundaryConditionRight.type == BoundaryCondition::NotAKnot) ? 2 : 1;
87 BandMatrix A(n, n_upper, n_lower);
88 std::vector<Scalar> rhs(n);
89 for (size_t i = 1; i < n - 1; i++)
90 {
91 A(i, i - 1) = 1.0 / 3.0 * (x[i] - x[i - 1]);
92 A(i, i) = 2.0 / 3.0 * (x[i + 1] - x[i - 1]);
93 A(i, i + 1) = 1.0 / 3.0 * (x[i + 1] - x[i]);
94 rhs[i] = (y[i + 1] - y[i]) / (x[i + 1] - x[i]) - (y[i] - y[i - 1]) / (x[i] - x[i - 1]);
95 }
96 // boundary conditions
98 {
99 // 2*c[0] = f''
100 A(0, 0) = 2.0;
101 A(0, 1) = 0.0;
103 }
105 {
106 // b[0] = f', needs to be re-expressed in terms of c:
107 // (2c[0]+c[1])(x[1]-x[0]) = 3 ((y[1]-y[0])/(x[1]-x[0]) - f')
108 A(0, 0) = 2.0 * (x[1] - x[0]);
109 A(0, 1) = 1.0 * (x[1] - x[0]);
110 rhs[0] = 3.0 * ((y[1] - y[0]) / (x[1] - x[0]) - boundaryConditionLeft.value);
111 }
113 {
114 // f'''(x[1]) exists, i.e. d[0]=d[1], or re-expressed in c:
115 // -h1*c[0] + (h0+h1)*c[1] - h0*c[2] = 0
116 A(0, 0) = -(x[2] - x[1]);
117 A(0, 1) = x[2] - x[0];
118 A(0, 2) = -(x[1] - x[0]);
119 rhs[0] = 0.0;
120 }
122 {
123 // 2*c[n-1] = f''
124 A(n - 1, n - 1) = 2.0;
125 A(n - 1, n - 2) = 0.0;
126 rhs[n - 1] = boundaryConditionRight.value;
127 }
129 {
130 // b[n-1] = f', needs to be re-expressed in terms of c:
131 // (c[n-2]+2c[n-1])(x[n-1]-x[n-2])
132 // = 3 (f' - (y[n-1]-y[n-2])/(x[n-1]-x[n-2]))
133 A(n - 1, n - 1) = 2.0 * (x[n - 1] - x[n - 2]);
134 A(n - 1, n - 2) = 1.0 * (x[n - 1] - x[n - 2]);
135 rhs[n - 1] = 3.0 * (boundaryConditionRight.value - (y[n - 1] - y[n - 2]) / (x[n - 1] - x[n - 2]));
136 }
138 {
139 // f'''(x[n-2]) exists, i.e. d[n-3]=d[n-2], or re-expressed in c:
140 // -h_{n-2}*c[n-3] + (h_{n-3}+h_{n-2})*c[n-2] - h_{n-3}*c[n-1] = 0
141 A(n - 1, n - 3) = -(x[n - 1] - x[n - 2]);
142 A(n - 1, n - 2) = x[n - 1] - x[n - 3];
143 A(n - 1, n - 1) = -(x[n - 2] - x[n - 3]);
144 rhs[0] = 0.0;
145 }
146
147 // solve the equation system to obtain the parameters c[]
148 coef_c = A.lu_solve(rhs);
149
150 // calculate parameters b[] and d[] based on c[]
151 coef_d.resize(n);
152 coef_b.resize(n);
153 for (size_t i = 0; i < n - 1; i++)
154 {
155 coef_d[i] = 1.0 / 3.0 * (coef_c[i + 1] - coef_c[i]) / (x[i + 1] - x[i]);
156 coef_b[i] = (y[i + 1] - y[i]) / (x[i + 1] - x[i])
157 - 1.0 / 3.0 * (2.0 * coef_c[i] + coef_c[i + 1]) * (x[i + 1] - x[i]);
158 }
159 // for the right extrapolation coefficients (zero cubic term)
160 // f_{n-1}(x) = y_{n-1} + b*(x-x_{n-1}) + c*(x-x_{n-1})^2
161 auto h = x[n - 1] - x[n - 2];
162 // coef_c[n-1] is determined by the boundary condition
163 coef_d[n - 1] = 0.0;
164 coef_b[n - 1] = 3.0 * coef_d[n - 2] * h * h + 2.0 * coef_c[n - 2] * h + coef_b[n - 2]; // = f'_{n-2}(x_{n-1})
166 {
167 coef_c[n - 1] = 0.0; // force linear extrapolation
168 }
169 // for left extrapolation coefficients
171 }
172
174 [[nodiscard]] size_t size() const noexcept
175 {
176 return vals_x.size();
177 }
178
182 [[nodiscard]] Scalar operator()(Scalar x) const
183 {
184 size_t n = vals_x.size();
185 size_t idx = findClosestIdx(x);
186
187 auto h = x - vals_x[idx];
188
189 if (x < vals_x[0]) // extrapolation to the left
190 {
191 return (coef_c0 * h + coef_b[0]) * h + vals_y[0];
192 }
193 if (x > vals_x[n - 1]) // extrapolation to the right
194 {
195 return (coef_c[n - 1] * h + coef_b[n - 1]) * h + vals_y[n - 1];
196 }
197 // interpolation
198 return ((coef_d[idx] * h + coef_c[idx]) * h + coef_b[idx]) * h + vals_y[idx];
199 }
200
205 [[nodiscard]] Scalar derivative(size_t order, Scalar x) const
206 {
207 size_t n = vals_x.size();
208 size_t idx = findClosestIdx(x);
209
210 auto h = x - vals_x[idx];
211 if (x < vals_x[0]) // extrapolation to the left
212 {
213 switch (order)
214 {
215 case 1:
216 return 2.0 * coef_c0 * h + coef_b[0];
217 case 2:
218 return 2.0 * coef_c0;
219 default:
220 return 0.0;
221 }
222 }
223 else if (x > vals_x[n - 1]) // extrapolation to the right
224 {
225 switch (order)
226 {
227 case 1:
228 return 2.0 * coef_c[n - 1] * h + coef_b[n - 1];
229 case 2:
230 return 2.0 * coef_c[n - 1];
231 default:
232 return 0.0;
233 }
234 }
235 else // interpolation
236 {
237 switch (order)
238 {
239 case 1:
240 return (3.0 * coef_d[idx] * h + 2.0 * coef_c[idx]) * h + coef_b[idx];
241 case 2:
242 return 6.0 * coef_d[idx] * h + 2.0 * coef_c[idx];
243 case 3:
244 return 6.0 * coef_d[idx];
245 default:
246 return 0.0;
247 }
248 }
249 }
250
251 private:
252 std::vector<Scalar> vals_x;
253 std::vector<Scalar> vals_y;
254 std::vector<Scalar> coef_b;
255 std::vector<Scalar> coef_c;
256 std::vector<Scalar> coef_d;
257 Scalar coef_c0{ 0.0 };
258
261
265 [[nodiscard]] size_t findClosestIdx(Scalar x) const
266 {
267 auto it = std::upper_bound(vals_x.begin(), vals_x.end(), x);
268 return static_cast<size_t>(std::max(static_cast<int>(it - vals_x.begin()) - 1, 0));
269 }
270
273 {
274 public:
279 BandMatrix(size_t dim, size_t nUpper, size_t nLower)
280 : upperBand(nUpper + 1, std::vector<Scalar>(dim)),
281 lowerBand(nLower + 1, std::vector<Scalar>(dim)) {}
282
284 Scalar& operator()(size_t i, size_t j)
285 {
286 return const_cast<Scalar&>(static_cast<const CubicSpline::BandMatrix&>(*this)(i, j)); // NOLINT(cppcoreguidelines-pro-type-const-cast)
287 }
289 [[nodiscard]] const Scalar& operator()(size_t i, size_t j) const
290 {
291 // j - i = 0 -> diagonal, > 0 upper right part, < 0 lower left part
292 return j >= i ? upperBand[j - i][i] : lowerBand[i - j][i];
293 }
294
298 [[nodiscard]] std::vector<Scalar> lu_solve(const std::vector<Scalar>& b, bool is_lu_decomposed = false)
299 {
300 INS_ASSERT_USER_ERROR(dim() == b.size(), "The BandMatrix dimension must be the same as the vector b in the equation Ax = b.");
301
302 if (!is_lu_decomposed)
303 {
304 lu_decompose();
305 }
306 auto y = l_solve(b);
307 auto x = u_solve(y);
308 return x;
309 }
310
311 private:
313 [[nodiscard]] size_t dim() const
314 {
315 return !upperBand.empty() ? upperBand[0].size() : 0;
316 }
318 [[nodiscard]] size_t dimUpperBand() const
319 {
320 return upperBand.size() - 1;
321 }
323 [[nodiscard]] size_t dimLowerBand() const
324 {
325 return lowerBand.size() - 1;
326 }
327
330 {
331 // preconditioning
332 // normalize column i so that a_ii=1
333 for (size_t i = 0; i < dim(); i++)
334 {
335 assert(this->operator()(i, i) != 0.0);
336 lowerBand[0][i] = 1.0 / this->operator()(i, i);
337 size_t j_min = i > dimLowerBand() ? i - dimLowerBand() : 0;
338 size_t j_max = std::min(dim() - 1, i + dimUpperBand());
339 for (size_t j = j_min; j <= j_max; j++)
340 {
341 this->operator()(i, j) *= lowerBand[0][i];
342 }
343 this->operator()(i, i) = 1.0; // prevents rounding errors
344 }
345
346 // Gauss LR-Decomposition
347 for (size_t k = 0; k < dim(); k++)
348 {
349 size_t i_max = std::min(dim() - 1, k + dimLowerBand());
350 for (size_t i = k + 1; i <= i_max; i++)
351 {
352 assert(this->operator()(k, k) != 0.0);
353
354 auto x = -this->operator()(i, k) / this->operator()(k, k);
355 this->operator()(i, k) = -x; // assembly part of L
356 size_t j_max = std::min(dim() - 1, k + dimUpperBand());
357 for (size_t j = k + 1; j <= j_max; j++)
358 {
359 // assembly part of R
360 this->operator()(i, j) = this->operator()(i, j) + x * this->operator()(k, j);
361 }
362 }
363 }
364 }
365
367 [[nodiscard]] std::vector<Scalar> l_solve(const std::vector<Scalar>& b) const
368 {
369 INS_ASSERT_USER_ERROR(dim() == b.size(), "The BandMatrix dimension must be the same as the vector b in the equation Ax = b.");
370
371 std::vector<Scalar> x(dim());
372 for (size_t i = 0; i < dim(); i++)
373 {
374 Scalar sum = 0;
375 size_t j_start = i > dimLowerBand() ? i - dimLowerBand() : 0;
376 for (size_t j = j_start; j < i; j++)
377 {
378 sum += this->operator()(i, j) * x[j];
379 }
380 x[i] = (b[i] * lowerBand[0][i]) - sum;
381 }
382 return x;
383 }
385 [[nodiscard]] std::vector<Scalar> u_solve(const std::vector<Scalar>& b) const
386 {
387 INS_ASSERT_USER_ERROR(dim() == b.size(), "The BandMatrix dimension must be the same as the vector b in the equation Ax = b.");
388
389 std::vector<Scalar> x(dim());
390 for (size_t i = dim(); i-- > 0;)
391 {
392 Scalar sum = 0;
393 size_t j_stop = std::min(dim() - 1, i + dimUpperBand());
394 for (size_t j = i + 1; j <= j_stop; j++)
395 {
396 sum += this->operator()(i, j) * x[j];
397 }
398 x[i] = (b[i] - sum) / this->operator()(i, i);
399 }
400 return x;
401 }
402
403 std::vector<std::vector<Scalar>> upperBand;
404 std::vector<std::vector<Scalar>> lowerBand;
405 };
406};
407
408} // namespace NAV
Assertion helpers.
#define INS_ASSERT_USER_ERROR(_EXP, _MSG)
Assert function with message.
Definition Assert.h:21
Sparse matrix whose non-zero entries are confined to a diagonal band, comprising the main diagonal an...
Definition CubicSpline.hpp:273
std::vector< Scalar > lu_solve(const std::vector< Scalar > &b, bool is_lu_decomposed=false)
Definition CubicSpline.hpp:298
std::vector< std::vector< Scalar > > upperBand
upper diagonal band
Definition CubicSpline.hpp:403
std::vector< std::vector< Scalar > > lowerBand
lower diagonal band
Definition CubicSpline.hpp:404
BandMatrix(size_t dim, size_t nUpper, size_t nLower)
Constructor.
Definition CubicSpline.hpp:279
size_t dimLowerBand() const
Returns the dimension of the lower band.
Definition CubicSpline.hpp:323
Scalar & operator()(size_t i, size_t j)
Access operator i ∈ [i=0,...,dim()-1].
Definition CubicSpline.hpp:284
size_t dim() const
Returns the matrix dimension.
Definition CubicSpline.hpp:313
std::vector< Scalar > u_solve(const std::vector< Scalar > &b) const
Solves the equation Ux = b for x.
Definition CubicSpline.hpp:385
std::vector< Scalar > l_solve(const std::vector< Scalar > &b) const
Solves the equation Lx = b for x.
Definition CubicSpline.hpp:367
void lu_decompose()
Calculate the LU decomposition.
Definition CubicSpline.hpp:329
size_t dimUpperBand() const
Returns the dimension of the upper band.
Definition CubicSpline.hpp:318
const Scalar & operator()(size_t i, size_t j) const
Access operator i ∈ [i=0,...,dim()-1].
Definition CubicSpline.hpp:289
Cubic Spline class.
Definition CubicSpline.hpp:35
void setPoints(const std::vector< Scalar > &x, const std::vector< Scalar > &y)
Set the points/knots of the spline and calculate the spline coefficients.
Definition CubicSpline.hpp:79
size_t findClosestIdx(Scalar x) const
Finds the closest index so that vals_x[idx] <= x (return 0 if x < vals_x[0])
Definition CubicSpline.hpp:265
std::vector< Scalar > vals_y
y coordinates of the knots
Definition CubicSpline.hpp:253
void setBoundaries(BoundaryCondition leftBoundaryCondition, BoundaryCondition rightBoundaryCondition)
Set the boundaries conditions. Has to be called before setPoints.
Definition CubicSpline.hpp:70
CubicSpline(const std::vector< Scalar > &X, const std::vector< Scalar > &Y, BoundaryCondition leftBoundaryCondition={ BoundaryCondition::SecondDerivative, 0.0 }, BoundaryCondition rightBoundaryCondition={ BoundaryCondition::SecondDerivative, 0.0 })
Constructor.
Definition CubicSpline.hpp:59
std::vector< Scalar > coef_b
Spline coefficients b.
Definition CubicSpline.hpp:254
CubicSpline()=default
Default Constructor.
Scalar derivative(size_t order, Scalar x) const
Calculates the derivative of the spline.
Definition CubicSpline.hpp:205
Scalar coef_c0
Spline coefficient c0 for left extrapolation.
Definition CubicSpline.hpp:257
size_t size() const noexcept
Returns the size of the spline vector.
Definition CubicSpline.hpp:174
BoundaryCondition boundaryConditionRight
Boundary condition for the right knot.
Definition CubicSpline.hpp:260
std::vector< Scalar > coef_d
Spline coefficients d.
Definition CubicSpline.hpp:256
Scalar operator()(Scalar x) const
Interpolates or extrapolates a value on the spline.
Definition CubicSpline.hpp:182
std::vector< Scalar > coef_c
Spline coefficients c.
Definition CubicSpline.hpp:255
BoundaryCondition boundaryConditionLeft
Boundary condition for the left knot.
Definition CubicSpline.hpp:259
std::vector< Scalar > vals_x
x coordinates of the knots
Definition CubicSpline.hpp:252
Boundary conditions for the spline end-points.
Definition CubicSpline.hpp:39
BoundaryType type
Type of the boundary condition.
Definition CubicSpline.hpp:47
Scalar value
Value of the boundary condition.
Definition CubicSpline.hpp:48
BoundaryType
Boundary type.
Definition CubicSpline.hpp:42
@ NotAKnot
not-a-knot: At the first and last interior break, even the third derivative is continuous (up to roun...
Definition CubicSpline.hpp:45
@ FirstDerivative
First derivative has to match a certain value.
Definition CubicSpline.hpp:43
@ SecondDerivative
Second derivative has to match a certain value.
Definition CubicSpline.hpp:44