0.3.0
Loading...
Searching...
No Matches
Ellipsoid.hpp
Go to the documentation of this file.
1// This file is part of INSTINCT, the INS Toolkit for Integrated
2// Navigation Concepts and Training by the Institute of Navigation of
3// the University of Stuttgart, Germany.
4//
5// This Source Code Form is subject to the terms of the Mozilla Public
6// License, v. 2.0. If a copy of the MPL was not distributed with this
7// file, You can obtain one at https://mozilla.org/MPL/2.0/.
8
13
14#pragma once
15
16#include <concepts>
18
19namespace NAV
20{
21
28template<std::floating_point Scalar>
29[[nodiscard]] Scalar calcGeocentricRadius(const Scalar& latitude, const Scalar& R_E, const Scalar& e_squared = InsConst::WGS84::e_squared)
30{
31 return R_E * std::sqrt(std::pow(std::cos(latitude), 2) + std::pow((1.0 - e_squared) * std::sin(latitude), 2));
32}
33
41template<std::floating_point Scalar>
42[[nodiscard]] Scalar calcEarthRadius_N(const Scalar& latitude, const Scalar& a = InsConst::WGS84::a, const Scalar& e_squared = InsConst::WGS84::e_squared)
43{
44 Scalar k = std::sqrt(1 - e_squared * std::pow(std::sin(latitude), 2));
45
46 // North/South (meridian) earth radius [m]
47 return a * (1 - e_squared) / std::pow(k, 3);
48}
49
57template<std::floating_point Scalar>
58[[nodiscard]] Scalar calcEarthRadius_E(const Scalar& latitude, const Scalar& a = InsConst::WGS84::a, const Scalar& e_squared = InsConst::WGS84::e_squared)
59{
60 // East/West (prime vertical) earth radius [m]
61 return a / std::sqrt(1 - e_squared * std::pow(std::sin(latitude), 2));
62}
63
70template<typename Derived>
71[[nodiscard]] Eigen::Matrix3<typename Derived::Scalar> conversionMatrixCartesianCurvilinear(const Eigen::MatrixBase<Derived>& lla_position,
72 const typename Derived::Scalar& R_N, const typename Derived::Scalar& R_E)
73{
74 return Eigen::DiagonalMatrix<typename Derived::Scalar, 3>{ 1.0 / (R_N + lla_position(2)),
75 1.0 / ((R_E + lla_position(2)) * std::cos(lla_position(0))),
76 -1.0 };
77}
78
87template<std::floating_point Scalar>
88[[nodiscard]] Scalar calcGreatCircleDistance(Scalar lat1, Scalar lon1, Scalar lat2, Scalar lon2)
89{
90 Scalar R = calcGeocentricRadius(lat1, calcEarthRadius_E(lat1));
91 Scalar dLat = lat2 - lat1;
92 Scalar dLon = lon2 - lon1;
93 Scalar a = std::pow(std::sin(dLat / 2.0), 2) + std::cos(lat1) * std::cos(lat2) * std::pow(std::sin(dLon / 2.0), 2);
94 Scalar c = 2.0 * std::atan2(std::sqrt(a), std::sqrt(1.0 - a));
95 return R * c; // meters
96}
97
106template<std::floating_point Scalar>
107[[nodiscard]] Scalar calcGeographicalDistance(Scalar lat1, Scalar lon1, Scalar lat2, Scalar lon2)
108{
109 if (lat1 == lat2 && lon1 == lon2)
110 {
111 return 0;
112 }
113 // First convert the latitudes 𝜙₁,𝜙₂ of the two points to reduced latitudes 𝛽₁,𝛽₂
114 Scalar beta1 = std::atan((1 - InsConst::WGS84::f) * std::tan(lat1));
115 Scalar beta2 = std::atan((1 - InsConst::WGS84::f) * std::tan(lat2));
116
117 // Then calculate the central angle 𝜎 in radians between two points 𝛽₁,𝜆₁ and 𝛽₂,𝜆₂ on a sphere using the
118 // Great-circle distance method (law of cosines or haversine formula), with longitudes 𝜆₁ and 𝜆₂ being the same on the sphere as on the spheroid.
119 Scalar sigma = calcGreatCircleDistance(beta1, lon1, beta2, lon2)
121
122 Scalar P = (beta1 + beta2) / 2;
123 Scalar Q = (beta2 - beta1) / 2;
124
125 Scalar X = (sigma - std::sin(sigma)) * std::pow((std::sin(P) * std::cos(Q)) / std::cos(sigma / 2), 2);
126 Scalar Y = (sigma + std::sin(sigma)) * std::pow((std::cos(P) * std::sin(Q)) / std::sin(sigma / 2), 2);
127
128 return InsConst::WGS84::a * (sigma - InsConst::WGS84::f / 2.0 * (X + Y));
129}
130
131} // namespace NAV
Holds all Constants.
Scalar calcGeographicalDistance(Scalar lat1, Scalar lon1, Scalar lat2, Scalar lon2)
Measure the distance between two points over an ellipsoidal-surface.
Definition Ellipsoid.hpp:107
Scalar calcEarthRadius_N(const Scalar &latitude, const Scalar &a=InsConst::WGS84::a, const Scalar &e_squared=InsConst::WGS84::e_squared)
Calculates the North/South (meridian) earth radius.
Definition Ellipsoid.hpp:42
Scalar calcGreatCircleDistance(Scalar lat1, Scalar lon1, Scalar lat2, Scalar lon2)
Measure the distance between two points on a sphere.
Definition Ellipsoid.hpp:88
Scalar calcGeocentricRadius(const Scalar &latitude, const Scalar &R_E, const Scalar &e_squared=InsConst::WGS84::e_squared)
r_eS^e The distance of a point on the Earth's surface from the center of the Earth
Definition Ellipsoid.hpp:29
Eigen::Matrix3< typename Derived::Scalar > conversionMatrixCartesianCurvilinear(const Eigen::MatrixBase< Derived > &lla_position, const typename Derived::Scalar &R_N, const typename Derived::Scalar &R_E)
Conversion matrix between cartesian and curvilinear perturbations to the position.
Definition Ellipsoid.hpp:71
Scalar calcEarthRadius_E(const Scalar &latitude, const Scalar &a=InsConst::WGS84::a, const Scalar &e_squared=InsConst::WGS84::e_squared)
Calculates the East/West (prime vertical) earth radius.
Definition Ellipsoid.hpp:58
static constexpr double f
Flattening f = (a-b)/a.
Definition Constants.hpp:52
static constexpr double a
Semi-major axis = equatorial radius.
Definition Constants.hpp:50
static constexpr double e_squared
Square of the first eccentricity of the ellipsoid.
Definition Constants.hpp:56