28template<std::
floating_po
int Scalar>
31 return R_E * std::sqrt(std::pow(std::cos(latitude), 2) + std::pow((1.0 - e_squared) * std::sin(latitude), 2));
41template<std::
floating_po
int Scalar>
44 Scalar k = std::sqrt(1 - e_squared * std::pow(std::sin(latitude), 2));
47 return a * (1 - e_squared) / std::pow(k, 3);
57template<std::
floating_po
int Scalar>
61 return a / std::sqrt(1 - e_squared * std::pow(std::sin(latitude), 2));
70template<
typename Derived>
72 const typename Derived::Scalar& R_N,
const typename Derived::Scalar& R_E)
74 return Eigen::DiagonalMatrix<typename Derived::Scalar, 3>{ 1.0 / (R_N + lla_position(2)),
75 1.0 / ((R_E + lla_position(2)) * std::cos(lla_position(0))),
87template<std::
floating_po
int Scalar>
91 Scalar dLat = lat2 - lat1;
92 Scalar dLon = lon2 - lon1;
93 Scalar a = std::pow(std::sin(dLat / 2.0), 2) + std::cos(lat1) * std::cos(lat2) * std::pow(std::sin(dLon / 2.0), 2);
94 Scalar c = 2.0 * std::atan2(std::sqrt(a), std::sqrt(1.0 - a));
106template<std::
floating_po
int Scalar>
109 if (lat1 == lat2 && lon1 == lon2)
122 Scalar P = (beta1 + beta2) / 2;
123 Scalar Q = (beta2 - beta1) / 2;
125 Scalar X = (sigma - std::sin(sigma)) * std::pow((std::sin(P) * std::cos(Q)) / std::cos(sigma / 2), 2);
126 Scalar Y = (sigma + std::sin(sigma)) * std::pow((std::cos(P) * std::sin(Q)) / std::sin(sigma / 2), 2);
Scalar calcGeographicalDistance(Scalar lat1, Scalar lon1, Scalar lat2, Scalar lon2)
Measure the distance between two points over an ellipsoidal-surface.
Definition Ellipsoid.hpp:107
Scalar calcEarthRadius_N(const Scalar &latitude, const Scalar &a=InsConst::WGS84::a, const Scalar &e_squared=InsConst::WGS84::e_squared)
Calculates the North/South (meridian) earth radius.
Definition Ellipsoid.hpp:42
Scalar calcGreatCircleDistance(Scalar lat1, Scalar lon1, Scalar lat2, Scalar lon2)
Measure the distance between two points on a sphere.
Definition Ellipsoid.hpp:88
Scalar calcGeocentricRadius(const Scalar &latitude, const Scalar &R_E, const Scalar &e_squared=InsConst::WGS84::e_squared)
r_eS^e The distance of a point on the Earth's surface from the center of the Earth
Definition Ellipsoid.hpp:29
Eigen::Matrix3< typename Derived::Scalar > conversionMatrixCartesianCurvilinear(const Eigen::MatrixBase< Derived > &lla_position, const typename Derived::Scalar &R_N, const typename Derived::Scalar &R_E)
Conversion matrix between cartesian and curvilinear perturbations to the position.
Definition Ellipsoid.hpp:71
Scalar calcEarthRadius_E(const Scalar &latitude, const Scalar &a=InsConst::WGS84::a, const Scalar &e_squared=InsConst::WGS84::e_squared)
Calculates the East/West (prime vertical) earth radius.
Definition Ellipsoid.hpp:58
static constexpr double f
Flattening f = (a-b)/a.
Definition Constants.hpp:52
static constexpr double a
Semi-major axis = equatorial radius.
Definition Constants.hpp:50
static constexpr double e_squared
Square of the first eccentricity of the ellipsoid.
Definition Constants.hpp:56