0.3.0
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages Concepts
Ellipsoid.hpp File Reference

Functions concerning the ellipsoid model. More...

Go to the source code of this file.

Functions

template<std::floating_point Scalar>
Scalar NAV::calcEarthRadius_E (const Scalar &latitude, const Scalar &a=InsConst::WGS84::a, const Scalar &e_squared=InsConst::WGS84::e_squared)
 Calculates the East/West (prime vertical) earth radius.
 
template<std::floating_point Scalar>
Scalar NAV::calcEarthRadius_N (const Scalar &latitude, const Scalar &a=InsConst::WGS84::a, const Scalar &e_squared=InsConst::WGS84::e_squared)
 Calculates the North/South (meridian) earth radius.
 
template<std::floating_point Scalar>
Scalar NAV::calcGeocentricRadius (const Scalar &latitude, const Scalar &R_E, const Scalar &e_squared=InsConst::WGS84::e_squared)
 r_eS^e The distance of a point on the Earth's surface from the center of the Earth
 
template<std::floating_point Scalar>
Scalar NAV::calcGeographicalDistance (Scalar lat1, Scalar lon1, Scalar lat2, Scalar lon2)
 Measure the distance between two points over an ellipsoidal-surface.
 
template<std::floating_point Scalar>
Scalar NAV::calcGreatCircleDistance (Scalar lat1, Scalar lon1, Scalar lat2, Scalar lon2)
 Measure the distance between two points on a sphere.
 
template<typename Derived >
Eigen::Matrix3< typename Derived::Scalar > NAV::conversionMatrixCartesianCurvilinear (const Eigen::MatrixBase< Derived > &lla_position, const typename Derived::Scalar &R_N, const typename Derived::Scalar &R_E)
 Conversion matrix between cartesian and curvilinear perturbations to the position.
 

Detailed Description

Functions concerning the ellipsoid model.

Author
T. Topp (topp@.nosp@m.ins..nosp@m.uni-s.nosp@m.tutt.nosp@m.gart..nosp@m.de)
Date
2021-11-28

Function Documentation

◆ calcEarthRadius_E()

template<std::floating_point Scalar>
Scalar NAV::calcEarthRadius_E ( const Scalar & latitude,
const Scalar & a = InsConst::WGS84::a,
const Scalar & e_squared = InsConst::WGS84::e_squared )
nodiscard

Calculates the East/West (prime vertical) earth radius.

Parameters
[in]latitude𝜙 Latitude in [rad]
[in]aSemi-major axis
[in]e_squaredSquare of the first eccentricity of the ellipsoid
Returns
East/West (prime vertical) earth radius [m]
Note
See [17] Groves, ch. 2.4.2, eq. 2.106, p. 59
See [47] Titterton, ch. 3.7.2, eq. 3.84, p. 49

◆ calcEarthRadius_N()

template<std::floating_point Scalar>
Scalar NAV::calcEarthRadius_N ( const Scalar & latitude,
const Scalar & a = InsConst::WGS84::a,
const Scalar & e_squared = InsConst::WGS84::e_squared )
nodiscard

Calculates the North/South (meridian) earth radius.

Parameters
[in]latitude𝜙 Latitude in [rad]
[in]aSemi-major axis
[in]e_squaredSquare of the first eccentricity of the ellipsoid
Returns
North/South (meridian) earth radius [m]
Note
See [17] Groves, ch. 2.4.2, eq. 2.105, p. 59
See [47] Titterton, ch. 3.7.2, eq. 3.83, p. 49

◆ calcGeocentricRadius()

template<std::floating_point Scalar>
Scalar NAV::calcGeocentricRadius ( const Scalar & latitude,
const Scalar & R_E,
const Scalar & e_squared = InsConst::WGS84::e_squared )
nodiscard

r_eS^e The distance of a point on the Earth's surface from the center of the Earth

Parameters
[in]latitude𝜙 Latitude in [rad]
[in]R_EPrime vertical radius of curvature (East/West) in [m]
[in]e_squaredSquare of the first eccentricity of the ellipsoid
Returns
Geocentric Radius in [m]
Note
[17] Groves, ch. 2.4.7, eq. 2.137, p. 71

◆ calcGeographicalDistance()

template<std::floating_point Scalar>
Scalar NAV::calcGeographicalDistance ( Scalar lat1,
Scalar lon1,
Scalar lat2,
Scalar lon2 )
nodiscard

Measure the distance between two points over an ellipsoidal-surface.

Parameters
[in]lat1Latitude of first point in [rad]
[in]lon1Longitude of first point in [rad]
[in]lat2Latitude of second point in [rad]
[in]lon2Longitude of second point in [rad]
Returns
The distance in [m]
Note
See Lambert's formula for long lines (https://en.wikipedia.org/wiki/Geographical_distance#Lambert's_formula_for_long_lines)

◆ calcGreatCircleDistance()

template<std::floating_point Scalar>
Scalar NAV::calcGreatCircleDistance ( Scalar lat1,
Scalar lon1,
Scalar lat2,
Scalar lon2 )
nodiscard

Measure the distance between two points on a sphere.

Parameters
[in]lat1Latitude of first point in [rad]
[in]lon1Longitude of first point in [rad]
[in]lat2Latitude of second point in [rad]
[in]lon2Longitude of second point in [rad]
Returns
The distance in [m]
Note
See Haversine Formula (https://www.movable-type.co.uk/scripts/latlong.html)

◆ conversionMatrixCartesianCurvilinear()

template<typename Derived >
Eigen::Matrix3< typename Derived::Scalar > NAV::conversionMatrixCartesianCurvilinear ( const Eigen::MatrixBase< Derived > & lla_position,
const typename Derived::Scalar & R_N,
const typename Derived::Scalar & R_E )
nodiscard

Conversion matrix between cartesian and curvilinear perturbations to the position.

Parameters
[in]lla_positionPosition as Lat Lon Alt in [rad rad m]
[in]R_NMeridian radius of curvature in [m]
[in]R_EPrime vertical radius of curvature (East/West) [m]
Returns
T_rn_p A 3x3 matrix
Note
See [17] Groves, ch. 2.4.3, eq. 2.119, p. 63