0.3.0
Loading...
Searching...
No Matches
INS/GNSS Loosely-coupled Kalman Filter (local-navigation frame)

Local-Level Frame Error State Equations

Short form

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix-short}
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},nodes={rectangle,text width=1.8em,align=center},row sep=0.3em, column sep=0.4em] {
      \boldsymbol{\delta \dotup{\psi}} \\
      \boldsymbol{\delta \dotup{v}}^{n} \\
      \boldsymbol{\delta \dotup{p}}_b \\
      \boldsymbol{\delta \dotup{f}}^{\raise-0.45ex\hbox{$\scriptstyle b$}} \\
      \boldsymbol{\delta \dotup{\omega}}_{ib}^b \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\boldsymbol{\delta} \mathbf{\dotup{x}}$} (m-1-1.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-1-1}
      \fhighlight[blue!20]{m-2-1}{m-2-1}
      \fhighlight[cyan!20]{m-3-1}{m-3-1}
      \fhighlight[red!20]{m-4-1}{m-4-1}
      \fhighlight[orange!20]{m-5-1}{m-5-1}
    \end{pgfonlayer}
  \end{tikzpicture}
  =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                nodes={rectangle,text width=2.5em,align=center},row sep=0.3em, column sep=0.4em]
    {
      \mathbf{F}_{\delta \dotup{\psi},\delta \psi}^n & \mathbf{F}_{\delta \dotup{\psi},\delta v}^n & \mathbf{F}_{\delta \dotup{\psi},\delta r}^n & \mathbf{0}_3   & \mathbf{C}_b^n \\
      \mathbf{F}_{\delta \dotup{v},\delta \psi}^n    & \mathbf{F}_{\delta \dotup{v},\delta v}^n    & \mathbf{F}_{\delta \dotup{v},\delta r}^n    & \mathbf{C}_b^n & \mathbf{0}_3   \\
      \mathbf{0}_3                                   & \mathbf{F}_{\delta \dotup{r},\delta v}^n    & \mathbf{F}_{\delta \dotup{r},\delta r}^n    & \mathbf{0}_3   & \mathbf{0}_3   \\
      \mathbf{0}_3                                   & \mathbf{0}_3                                & \mathbf{0}_3                                & \mathbf{0}_3   & \mathbf{0}_3   \\
      \mathbf{0}_3                                   & \mathbf{0}_3                                & \mathbf{0}_3                                & \mathbf{0}_3   & \mathbf{0}_3   \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\mathbf{F}$} (m-1-5.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-1-1}
      \fhighlight[yellow!20]{m-1-2}{m-1-2}
      \fhighlight[lime!20]{m-1-3}{m-1-3}
      \fhighlight[orange!20]{m-1-5}{m-1-5}
      \fhighlight[purple!20]{m-2-1}{m-2-1}
      \fhighlight[blue!20]{m-2-2}{m-2-2}
      \fhighlight[violet!20]{m-2-3}{m-2-3}
      \fhighlight[red!20]{m-2-4}{m-2-4}
      \fhighlight[teal!20]{m-3-2}{m-3-2}
      \fhighlight[cyan!20]{m-3-3}{m-3-3}
    \end{pgfonlayer}
  \end{tikzpicture}
  \cdot
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                nodes={rectangle,text width=1.8em,align=center},row sep=0.3em, column sep=0.4em] {
      \boldsymbol{\delta \psi} \\
      \boldsymbol{\delta v}^{n} \\
      \boldsymbol{\delta p}_b \\
      \boldsymbol{\delta f}^b \\
      \boldsymbol{\delta \omega}_{ib}^b \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\boldsymbol{\delta} \mathbf{x}$} (m-1-1.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-1-1}
      \fhighlight[blue!20]{m-2-1}{m-2-1}
      \fhighlight[cyan!20]{m-3-1}{m-3-1}
      \fhighlight[red!20]{m-4-1}{m-4-1}
      \fhighlight[orange!20]{m-5-1}{m-5-1}
    \end{pgfonlayer}
  \end{tikzpicture}
\end{equation}

Detailed form

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix}
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                nodes={rectangle,text width=1.5em,align=center,minimum height=2.3em,anchor=center},row sep=0.3em, column sep=0.4em,] {
      \delta \dotup{R}              \\ \delta \dotup{P}              \\ \delta \dotup{Y}              \\
      \delta \dotup{v}_{N}          \\ \delta \dotup{v}_{E}          \\ \delta \dotup{v}_{D}          \\
      \delta \dotup{\phi}           \\ \delta \dotup{\lambda}        \\ \delta \dotup{h}              \\
      \delta \dotup{f}_{x}^{b}      \\ \delta \dotup{f}_{y}^{b}      \\ \delta \dotup{f}_{z}^{b}      \\
      \delta \dotup{\omega}_{x}^{b} \\ \delta \dotup{\omega}_{y}^{b} \\ \delta \dotup{\omega}_{z}^{b} \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\boldsymbol{\delta} \mathbf{\dotup{x}}$} (m-1-1.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-3-1}
      \fhighlight[blue!20]{m-4-1}{m-6-1}
      \fhighlight[cyan!20]{m-7-1}{m-9-1}
      \fhighlight[red!20]{m-10-1}{m-12-1}
      \fhighlight[orange!20]{m-13-1}{m-15-1}
    \end{pgfonlayer}
  \end{tikzpicture}
  =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},nodes in empty cells,
                row sep=0.3em, column sep=0.4em,
                nodes={rectangle,minimum height=2.3em,anchor=center},] {
               0         &  \omega_{in,3}^{n} & -\omega_{in,2}^{n} &                             0                            &                    -\frac{1}{R_E + h}                     &                       0                      &                                    \omega_{ie}\sin{\phi}                                    &      0       &                             \frac{v_E}{(R_E + h)^2}                            &  &                &  &  &                & \\
      -\omega_{in,3}^{n} &          0         &  \omega_{in,1}^{n} &                    \frac{1}{R_N + h}                     &                             0                             &                       0                      &                                             0                                               &      0       &                            -\frac{v_N}{(R_N + h)^2}                            &  &  \mathbf{0}_3  &  &  & \mathbf{C}_b^n & \\
       \omega_{in,2}^{n} & -\omega_{in,1}^{n} &          0         &                             0                            &                 \frac{\tan{\phi}}{R_E + h}                &                       0                      &                  \omega_{ie}\cos{\phi} + \frac{v_E}{(R_E + h)\cos^2{\phi}}                  &      0       &                       -\frac{v_E \tan{\phi}}{(R_E + h)^2}                      &  &                &  &  &                & \\
               0         &         f_D        &        -f_E        &                    \frac{v_D}{R_N + h}                   & -2\frac{v_E \tan{\phi}}{R_E + h} - 2\omega_{ie}\sin{\phi} &              \frac{v_N}{R_N + h}             &                -\frac{v_E^2}{(R_E+h)\cos^2{\phi}}-2v_E\omega_{ie}\cos{\phi}                 &      0       &          \frac{v_E^2\tan{\phi}}{(R_E+h)^2} - \frac{v_Nv_D}{(R_N+h)^2}          &  &                &  &  &                & \\
             -f_D        &          0         &         f_N        &  \frac{v_E \tan{\phi}}{R_E + h} + 2\omega_{ie}\sin{\phi} &            \frac{v_N \tan{\phi} + v_D}{R_E + h}           & \frac{v_E}{R_E + h} + 2\omega_{ie}\cos{\phi} & \frac{v_N v_E}{(R_E+h)\cos^2{\phi}} + 2v_N\omega_{ie}\cos{\phi} - 2v_D\omega_{ie}\sin{\phi} &      0       &                 -\frac{v_Nv_E\tan{\phi} + v_Ev_D}{(R_E + h)^2}                 &  & \mathbf{C}_b^n &  &  &  \mathbf{0}_3  & \\
              f_E        &        -f_N        &          0         &                  -\frac{2v_N}{R_N + h}                   &       -\frac{2v_E}{R_E + h} - 2\omega_{ie}\cos{\phi}      &                       0                      &                                  2v_E\omega_{ie}\sin{\phi}                                  &      0       & \frac{v_E^2}{(R_E + h)^2} + \frac{v_N^2}{(R_N + h)^2} - \frac{2 g_0}{r_{eS}^e} &  &                &  &  &                & \\
                         &                    &                    &                      \frac{1}{R_N+h}                     &                             0                             &                       0                      &                                             0                                               &      0       &                            -\frac{v_N}{(R_N + h)^2}                            &  &                &  &  &                & \\
                         &    \mathbf{0}_3    &                    &                             0                            &                \frac{1}{(R_E+h)\cos{\phi}}                &                       0                      &                           \frac{v_E\tan{\phi}}{(R_E+h)\cos{\phi}}                           &      0       &                       -\frac{v_E}{(R_E + h)^2\cos{\phi}}                       &  &  \mathbf{0}_3  &  &  &  \mathbf{0}_3  & \\
                         &                    &                    &                             0                            &                             0                             &                      -1                      &                                             0                                               &      0       &                                        0                                       &  &                &  &  &                & \\
                         &                    &                    &                                                          &                                                           &                                              &                                                                                             &              &                                                                                &  &                &  &  &                & \\
                         &    \mathbf{0}_3    &                    &                                                          &                       \mathbf{0}_3                        &                                              &                                                                                             & \mathbf{0}_3 &                                                                                &  &  \mathbf{0}_3  &  &  &  \mathbf{0}_3  & \\
                         &                    &                    &                                                          &                                                           &                                              &                                                                                             &              &                                                                                &  &                &  &  &                & \\
                         &                    &                    &                                                          &                                                           &                                              &                                                                                             &              &                                                                                &  &                &  &  &                & \\
                         &    \mathbf{0}_3    &                    &                                                          &                       \mathbf{0}_3                        &                                              &                                                                                             & \mathbf{0}_3 &                                                                                &  &  \mathbf{0}_3  &  &  &  \mathbf{0}_3  & \\
                         &                    &                    &                                                          &                                                           &                                              &                                                                                             &              &                                                                                &  &                &  &  &                & \\
    };

    \foreach \r in {1,3,4,6,7,9} {
      \foreach \c in {1,3,4,6,7,9,10,12,13,15} {
        \coordinate (m-\r-\c-nw) at (100,-100);
        \coordinate (m-\r-\c-se) at (-100,100);

        \foreach \row in {1,...,9} {
          \path let \p1=(m-\row-\c.west), \p2=(m-\r-\c-nw) in coordinate (m-\r-\c-nw) at ({min(\x1,\x2)},\y2);
          \path let \p1=(m-\row-\c.east), \p2=(m-\r-\c-se) in coordinate (m-\r-\c-se) at ({max(\x1,\x2)},\y2);
        }
        \foreach \col in {1,...,15} {
          \path let \p1=(m-\r-\col.north), \p2=(m-\r-\c-nw) in coordinate (m-\r-\c-nw) at (\x2,{max(\y1,\y2)});
          \path let \p1=(m-\r-\col.south), \p2=(m-\r-\c-se) in coordinate (m-\r-\c-se) at (\x2,{min(\y1,\y2)});
        }
      }
    }

    \path let \p1=(m-1-1-nw), \p2=(m-1-15-se) in coordinate (m-1-15-ne) at (\x2,\y1);
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1-nw) -- node[above=2pt] {$\mathbf{F}$} (m-1-15-ne);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1-nw}{m-3-3-se}
      \fhighlight[yellow!20]{m-1-4-nw}{m-3-6-se}
      \fhighlight[lime!20]{m-1-7-nw}{m-3-9-se}
      \fhighlight[orange!20]{m-1-13-nw}{m-3-15-se}
      \fhighlight[purple!20]{m-4-1-nw}{m-6-3-se}
      \fhighlight[blue!20]{m-4-4-nw}{m-6-6-se}
      \fhighlight[violet!20]{m-4-7-nw}{m-6-9-se}
      \fhighlight[red!20]{m-4-10-nw}{m-6-12-se}
      \fhighlight[teal!20]{m-7-4-nw}{m-9-6-se}
      \fhighlight[cyan!20]{m-7-7-nw}{m-9-9-se}
    \end{pgfonlayer}
  \end{tikzpicture}
  \cdot
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.4em,
                nodes={rectangle,text width=1.5em,align=center,minimum height=2.3em,anchor=center},] {
      \delta R              \\ \delta P              \\ \delta Y              \\
      \delta v_{N}          \\ \delta v_{E}          \\ \delta v_{D}          \\
      \delta \phi           \\ \delta \lambda        \\ \delta h              \\
      \delta f_{x}^{b}      \\ \delta f_{y}^{b}      \\ \delta f_{z}^{b}      \\
      \delta \omega_{x}^{b} \\ \delta \omega_{y}^{b} \\ \delta \omega_{z}^{b} \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\boldsymbol{\delta} \mathbf{x}$} (m-1-1.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-3-1}
      \fhighlight[blue!20]{m-4-1}{m-6-1}
      \fhighlight[cyan!20]{m-7-1}{m-9-1}
      \fhighlight[red!20]{m-10-1}{m-12-1}
      \fhighlight[orange!20]{m-13-1}{m-15-1}
    \end{pgfonlayer}
  \end{tikzpicture}
\end{equation}

This form corresponds to

  • [17] Groves, ch. 14.2.4, eq. 14.63, p. 587ff

The following sources can be taken as reference, but have at least one deviation from the form presented here

  • [47] Titterton, ch. 12.3.1.3, eq. 12.28, p. 345
    • Different sign in equations $ \highlight[yellow!20]{\mathbf{F}_{\delta \dotup{\psi},\delta v}^n} $, $ \highlight[lime!20]{\mathbf{F}_{\delta \dotup{\psi},\delta r}^n} $, $ \highlight[orange!20]{\mathbf{F}_{\delta \dotup{\psi},\delta \omega}^n} $, $ \highlight[purple!20]{\mathbf{F}_{\delta \dotup{v},\delta \psi}^n} $
  • [35] Noureldin, ch. 6.1.5, eq. 6.76, p. 219
    • ENU-System
    • Yaw defined counterclockwise
    • Different sign for the DCM term

However in section Error Equations comparison it is shown, that they can be transformed into each other.

Augmented State with Noise

The continuous linear dynamic system can be expressed as

\begin{equation} \label{eq:eq-LCKF_n-dynamicModel}
  \boldsymbol{\delta} \mathbf{\dotup{x}} = \mathbf{F} \cdot \boldsymbol{\delta} \mathbf{x} + \mathbf{G} \cdot \mathbf{w}
\end{equation}

Process noise is introduced into the $ \mathbf{F} $ and $ \mathbf{G} $ matrices in the accelerometer and gyroscope bias terms. Therefore the error equations can be extended as follows

\begin{equation} \label{eq:eq-LCKF_n-dynamicModel-short}
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},nodes={rectangle,text width=1.8em,align=center},row sep=0.3em, column sep=0.4em] {
      \boldsymbol{\delta \dotup{\psi}} \\
      \boldsymbol{\delta \dotup{v}}^{n} \\
      \boldsymbol{\delta \dotup{p}}_b \\
      \boldsymbol{\delta \dotup{f}}^{\raise-0.45ex\hbox{$\scriptstyle b$}} \\
      \boldsymbol{\delta \dotup{\omega}}_{ib}^b \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\boldsymbol{\delta} \mathbf{\dotup{x}}$} (m-1-1.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-1-1}
      \fhighlight[blue!20]{m-2-1}{m-2-1}
      \fhighlight[cyan!20]{m-3-1}{m-3-1}
      \fhighlight[red!20]{m-4-1}{m-4-1}
      \fhighlight[orange!20]{m-5-1}{m-5-1}
    \end{pgfonlayer}
  \end{tikzpicture}
  =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                nodes={rectangle,text width=2.5em,align=center},row sep=0.3em, column sep=0.4em]
    {
      \mathbf{F}_{\delta \dotup{\psi},\delta \psi}^n & \mathbf{F}_{\delta \dotup{\psi},\delta v}^n & \mathbf{F}_{\delta \dotup{\psi},\delta r}^n &    \mathbf{0}_3      &       \mathbf{C}_b^n      \\
      \mathbf{F}_{\delta \dotup{v},\delta \psi}^n    & \mathbf{F}_{\delta \dotup{v},\delta v}^n    & \mathbf{F}_{\delta \dotup{v},\delta r}^n    &    \mathbf{C}_b^n    &       \mathbf{0}_3        \\
      \mathbf{0}_3                                   & \mathbf{F}_{\delta \dotup{r},\delta v}^n    & \mathbf{F}_{\delta \dotup{r},\delta r}^n    &    \mathbf{0}_3      &       \mathbf{0}_3        \\
      \mathbf{0}_3                                   & \mathbf{0}_3                                & \mathbf{0}_3                                & -\boldsymbol{\beta}_f &       \mathbf{0}_3        \\
      \mathbf{0}_3                                   & \mathbf{0}_3                                & \mathbf{0}_3                                &    \mathbf{0}_3      & -\boldsymbol{\beta}_\omega \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\mathbf{F}$} (m-1-5.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-1-1}
      \fhighlight[yellow!20]{m-1-2}{m-1-2}
      \fhighlight[lime!20]{m-1-3}{m-1-3}
      \fhighlight[orange!20]{m-1-5}{m-1-5}
      \fhighlight[purple!20]{m-2-1}{m-2-1}
      \fhighlight[blue!20]{m-2-2}{m-2-2}
      \fhighlight[violet!20]{m-2-3}{m-2-3}
      \fhighlight[red!20]{m-2-4}{m-2-4}
      \fhighlight[teal!20]{m-3-2}{m-3-2}
      \fhighlight[cyan!20]{m-3-3}{m-3-3}
      \fhighlight[magenta!20]{m-4-4}{m-4-4}
      \fhighlight[olive!20]{m-5-5}{m-5-5}
    \end{pgfonlayer}
  \end{tikzpicture}
  \cdot
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                nodes={rectangle,text width=1.8em,align=center},row sep=0.3em, column sep=0.4em] {
      \boldsymbol{\delta \psi} \\
      \boldsymbol{\delta v}^{n} \\
      \boldsymbol{\delta p}_b \\
      \boldsymbol{\delta f}^b \\
      \boldsymbol{\delta \omega}_{ib}^b \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\boldsymbol{\delta} \mathbf{x}$} (m-1-1.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-1-1}
      \fhighlight[blue!20]{m-2-1}{m-2-1}
      \fhighlight[cyan!20]{m-3-1}{m-3-1}
      \fhighlight[red!20]{m-4-1}{m-4-1}
      \fhighlight[orange!20]{m-5-1}{m-5-1}
    \end{pgfonlayer}
  \end{tikzpicture}
  +
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                nodes={rectangle,text width=2em,align=center},row sep=0.3em, column sep=0.4em]
    {
       \mathbf{C}_b^n & \mathbf{0}_3   & \mathbf{0}_3 & \mathbf{0}_3 \\
       \mathbf{0}_3   & \mathbf{C}_b^n & \mathbf{0}_3 & \mathbf{0}_3 \\
       \mathbf{0}_3   & \mathbf{0}_3   & \mathbf{0}_3 & \mathbf{0}_3 \\
       \mathbf{0}_3   & \mathbf{0}_3   & \mathbf{I}_3 & \mathbf{0}_3 \\
       \mathbf{0}_3   & \mathbf{0}_3   & \mathbf{0}_3 & \mathbf{I}_3 \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\mathbf{G}$} (m-1-4.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[darkgray!20]{m-1-1}{m-1-1}
      \fhighlight[brown!20]{m-2-2}{m-2-2}
      \fhighlight[pink!20]{m-4-3}{m-4-3}
      \fhighlight[lightgray!20]{m-5-4}{m-5-4}
    \end{pgfonlayer}
  \end{tikzpicture}
  \cdot
  \mathbf{w}
\end{equation}

Random Walk

The random noise on the accelerometer and gyro measurements can be estimated as a Random Walk in the angle and velocity errors.

\begin{equation} \label{eq:eq-LCKF_n-random-walk}
  \dotup{x} = 0 + W(t)
\end{equation}

In general, the noise can have an arbitrary characteristic. In a Kalman filter, however, it must be normally distributed and is therefore limited to a Wiener Process. The terms in the noise input matrix $ \mathbf{G} $ are not scaled and therefore need to be compensated with a noise scale matrix $ \mathbf{W} $ depending on the amplitude of the noise process. The amplitude is defined by the standard deviation $\sigma$. This parameter can be chosen by the user for the accel and gyro measurements:

\begin{equation} \label{eq:eq-LCKF_n-random-walk-S-noise}
  \highlight[darkgray!20]{S_{ra,j}} = \sigma_{ra,j}, \qquad
  \highlight[brown!20]{S_{rg,j}} = \sigma_{rg,j}, \qquad\qquad j \in x,y,z
\end{equation}

where

  • $ \sigma_{ra} $ is the standard deviation of the noise on the accelerometer specific-force measurements
  • $ \sigma_{rg} $ is the standard deviation of the noise on the gyro angular-rate measurements

The bias states are also modeled as a random process. In case of random walk, their amplitudes are defined analogously to the above and $\beta = 0$.

Gauss-Markov 1. Order

Another option to model the bias states is given by the Gauss-Markov 1. Order process:

\begin{equation} \label{eq:eq-LCKF_n-gauss-markov-1}
  \dotup{x} = -\beta x + W(t)
\end{equation}

This introduces a deterministic part into the equation, namely the correlation coefficient $\beta$. This parameter defines, how much a current state is correlated with past states. The elements of the $ \mathbf{F} $ matrix are then

\begin{equation} \label{eq:eq-LCKF_n-random-walk-beta}
  \highlight[magenta!20]{\boldsymbol{\beta}_f} = \begin{pmatrix} \beta_{f} &      0     &      0     \\
                                                                    0       & \beta_{f} &      0     \\
                                                                    0       &      0     & \beta_{f} \end{pmatrix}, \qquad
  \highlight[olive!20]{\boldsymbol{\beta}_\omega} = \begin{pmatrix} \beta_{\omega} &        0        &        0        \\
                                                                           0        & \beta_{\omega} &        0        \\
                                                                           0        &        0        & \beta_{\omega} \end{pmatrix}
\end{equation}

where

  • $ \beta_{f} $ is the Gauss-Markov constant for the accelerometer 𝛽 = 1 / 𝜏 (𝜏 correlation length)
  • $ \beta_{\omega} $ is the Gauss-Markov constant for the gyroscope 𝛽 = 1 / 𝜏 (𝜏 correlation length)

Like before, the scaling is done inside the noise scale matrix. Now, the bias noise's amplitude is given by

\begin{equation} \label{eq:eq-LCKF_n-random-walk-S-bias_Brown}
  \highlight[pink!20]{S_{bad,j}} = \sqrt{\frac{2\sigma_{bad,j}^2}{\tau_{bad}}} , \qquad
  \highlight[lightgray!20]{S_{bgd,j}} = \sqrt{\frac{2\sigma_{bgd,j}^2}{\tau_{bgd}}}, \qquad\qquad j \in x,y,z
\end{equation}

with a given standard deviation of $\sigma_{bad}$ for the accelerometer's bias noise and $\sigma_{bgd}$ for the gyro's bias noise. The correlation lengths $ \tau_{bad} $ and $ \tau_{bgd} $ define how much a current state is correlated to values in the past. This process is generally limited to normal distributions. A detailed example of this type of system can be found in Brown & Hwang [10] (example 9.6).

Noise scale matrix W

\begin{equation} \label{eq:eq-LCKF_n-random-walk-noise-scale-matrix-W}
  \mathbf{W} =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                nodes={rectangle,text width=2em,align=center},row sep=0.3em, column sep=0.4em]
    {
      \mathbf{S}_{rg} & \mathbf{0}_3    & \mathbf{0}_3     & \mathbf{0}_3     \\
      \mathbf{0}_3    & \mathbf{S}_{ra} & \mathbf{0}_3     & \mathbf{0}_3     \\
      \mathbf{0}_3    & \mathbf{0}_3    & \mathbf{S}_{bad} & \mathbf{0}_3     \\
      \mathbf{0}_3    & \mathbf{0}_3    & \mathbf{0}_3     & \mathbf{S}_{bgd} \\
    };

    \begin{pgfonlayer}{background}
      \fhighlight[darkgray!20]{m-1-1}{m-1-1}
      \fhighlight[brown!20]{m-2-2}{m-2-2}
      \fhighlight[pink!20]{m-3-3}{m-3-3}
      \fhighlight[lightgray!20]{m-4-4}{m-4-4}
    \end{pgfonlayer}
  \end{tikzpicture}
\end{equation}

$ \mathbf{S}_{rg}, \mathbf{S}_{ra}, \mathbf{S}_{bad}, \mathbf{S}_{bgd} $ are diagonal matrices where entries are filled with the PSDs from \eqref{eq:eq-LCKF_n-random-walk-S-noise} and \eqref{eq:eq-LCKF_n-random-walk-S-bias} or \eqref{eq:eq-LCKF_n-random-walk-S-bias_Brown} .

Groves' process noise definition

In Groves [17], process noise is defined without the need of integration. Instead, noise amplitudes are given directly integrated over one time step $\tau_i$. Therefore, the PSDs of the accelerometer and gyro noise are:

\begin{equation} \label{eq:eq-LCKF_n-random-walk-S-noise-Groves}
  \highlight[darkgray!20]{S_{ra,j}} = \sigma_{ra,j}^2 \tau_i, \qquad
  \highlight[brown!20]{S_{rg,j}} = \sigma_{rg,j}^2 \tau_i, \qquad\qquad j \in x,y,z
\end{equation}

where

  • $ \sigma_{ra} $ is the standard deviation of the noise on the accelerometer specific-force measurements
  • $ \sigma_{rg} $ is the standard deviation of the noise on the gyro angular-rate measurements
  • $ \tau_i $ is the interval between the input of successive accelerometer and gyro outputs to the inertial navigation equations

The bias states are modeled by Groves with the noise PSD's:

\begin{equation} \label{eq:eq-LCKF_n-random-walk-S-bias}
  \highlight[pink!20]{S_{bad,j}} = \frac{\sigma_{bad,j}^2}{\tau_{bad}} , \qquad
  \highlight[lightgray!20]{S_{bgd,j}} = \frac{\sigma_{bgd,j}^2}{\tau_{bgd}}, \qquad\qquad j \in x,y,z
\end{equation}

where

  • $ \sigma_{bad} $ and $ \sigma_{bgd} $ are the standard deviations of the accelerometer and gyro dynamic biases
  • $ \tau_{bad} $ and $ \tau_{bgd} $ are the correlation times of the dynamic accelerometer and gyro biases

see [17] Groves, ch. 14.2.6, eq. 14.84, p. 592

Although correlation lengths $\tau_{bad} $ and $ \tau_{bgd} $ are considered, this process is rather a random walk than a Gauss-Markov 1. order process, because of the missing deterministic part in $\mathbf{F}$.

In INSTINCT, Groves' method \eqref{eq:eq-LCKF_n-random-walk-S-bias} is not altered from its reference [17] to avoid confusion.

Kalman-Filter Matrices

State transition matrix 𝚽 & Process noise covariance matrix Q

State transition matrix 𝚽

Exponential Matrix

The state transition matrix is defined as

\begin{equation} \label{eq:eq-LCKF_n-Phi-exp}
  \boldsymbol{\Phi} = \exp{(\mathbf{F} \tau_s)}
\end{equation}

see [17] Groves, ch. 3.2.3, eq. 3.33, p. 97

Taylor series

The exponential matrix cannot be calculated directly and numerical methods are computationally intensive. Therefore the transition matrix can be computed as a power-series expansion

\begin{equation} \label{eq:eq-LCKF_n-Phi-Taylor}
  \boldsymbol{\Phi} = \sum_{r=0}^{\infty} \frac{\mathbf{F}^r \tau_s^r}{r!} = \mathbf{I} + \mathbf{F} \tau_s + \frac{1}{2} \mathbf{F}^2 \tau^2 + \frac{1}{6} \mathbf{F}^3 \tau_s^3 + \dots
\end{equation}

see [17] Groves, ch. 3.2.3, eq. 3.34, p. 98

Process noise covariance matrix Q

The process noise covariance matrix is defined as

\begin{equation} \label{eq:eq-LCKF_n-Q-exact}
  \mathbf{Q}_{k-1} = \int_{t_k - \tau_s}^{t_k} \exp{(\mathbf{F}_{k-1} (t_k-t'))} \mathbf{G}_{k-1} \mathbf{W}_{k-1} \mathbf{G}_{k-1}^T \exp{(\mathbf{F}_{k-1}^T (t_k-t'))} dt'
\end{equation}

In Groves [17], this matrix is approximated as (see ch. 3.2.3, eq. 3.43/3.45, p. 99):

\begin{equation} \label{eq:eq-LCKF_n-Q-approx}
  \mathbf{Q}_{k-1} \approx \mathbf{G}_{k-1} \mathbf{W}_{k-1} \mathbf{G}_{k-1}^T \tau_s
\end{equation}

Taking the noise input and scale matrices from \eqref{eq:eq-LCKF_n-dynamicModel-short} and \eqref{eq:eq-LCKF_n-random-walk-noise-scale-matrix-W} and putting it into the exact form \eqref{eq:eq-LCKF_n-Q-exact} , it becomes

\begin{equation} \label{eq:eq-LCKF_n-Q-GWGT}
\begin{aligned}
  \mathbf{Q}_{k-1} &= \int_{t_k - \tau_s}^{t_k}
                           \exp{(\mathbf{F}_{k-1} (t_k-t'))}
                           \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
                             \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                                         nodes={rectangle,text width=4em,align=center},row sep=0.3em, column sep=0.4em]
                             {
                                \mathbf{C}_b^n \cdot \mathbf{S}_{rg} &             \mathbf{0}_3             &             \mathbf{0}_3            &             \mathbf{0}_3            \\
                                            \mathbf{0}_3             & \mathbf{C}_b^n \cdot \mathbf{S}_{ra} &             \mathbf{0}_3            &             \mathbf{0}_3            \\
                                            \mathbf{0}_3             &             \mathbf{0}_3             &             \mathbf{0}_3            &             \mathbf{0}_3            \\
                                            \mathbf{0}_3             &             \mathbf{0}_3             & \mathbf{I}_3 \cdot \mathbf{S}_{bad} &             \mathbf{0}_3            \\
                                            \mathbf{0}_3             &             \mathbf{0}_3             &             \mathbf{0}_3            & \mathbf{I}_3 \cdot \mathbf{S}_{bgd} \\
                             };

                             \begin{pgfonlayer}{background}
                               \fhighlight[darkgray!20]{m-1-1}{m-1-1}
                               \fhighlight[brown!20]{m-2-2}{m-2-2}
                               \fhighlight[pink!20]{m-4-3}{m-4-3}
                               \fhighlight[lightgray!20]{m-5-4}{m-5-4}
                             \end{pgfonlayer}
                           \end{tikzpicture}
                           \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
                             \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                                         nodes={rectangle,text width=4em,align=center},row sep=0.3em, column sep=0.4em]
                             {
                                \mathbf{C}_n^b & \mathbf{0}_3   & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 \\
                                \mathbf{0}_3   & \mathbf{C}_n^b & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 \\
                                \mathbf{0}_3   & \mathbf{0}_3   & \mathbf{0}_3 & \mathbf{I}_3 & \mathbf{0}_3 \\
                                \mathbf{0}_3   & \mathbf{0}_3   & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{I}_3 \\
                             };

                             \begin{pgfonlayer}{background}
                               \fhighlight[darkgray!20]{m-1-1}{m-1-1}
                               \fhighlight[brown!20]{m-2-2}{m-2-2}
                               \fhighlight[pink!20]{m-3-4}{m-3-4}
                               \fhighlight[lightgray!20]{m-4-5}{m-4-5}
                             \end{pgfonlayer}
                           \end{tikzpicture}
                           \exp{(\mathbf{F}_{k-1}^T (t_k-t'))}
                      dt' \\
                   &= \int_{t_k - \tau_s}^{t_k}
                           \exp{(\mathbf{F}_{k-1} (t_k-t'))}
                           \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
                             \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                                         nodes={rectangle,text width=5em,align=center},row sep=0.3em, column sep=0.4em]
                             {
                               \mathbf{C}_b^n \mathbf{S}_{rg} \mathbf{C}_n^b &                \mathbf{0}_3                   & \mathbf{0}_3 & \mathbf{0}_3     & \mathbf{0}_3     \\
                                              \mathbf{0}_3                   & \mathbf{C}_b^n \mathbf{S}_{ra} \mathbf{C}_n^b & \mathbf{0}_3 & \mathbf{0}_3     & \mathbf{0}_3     \\
                                              \mathbf{0}_3                   &                \mathbf{0}_3                   & \mathbf{0}_3 & \mathbf{0}_3     & \mathbf{0}_3     \\
                                              \mathbf{0}_3                   &                \mathbf{0}_3                   & \mathbf{0}_3 & \mathbf{S}_{bad} & \mathbf{0}_3     \\
                                              \mathbf{0}_3                   &                \mathbf{0}_3                   & \mathbf{0}_3 & \mathbf{0}_3     & \mathbf{S}_{bgd} \\
                             };

                             \begin{pgfonlayer}{background}
                               \fhighlight[darkgray!20]{m-1-1}{m-1-1}
                               \fhighlight[brown!20]{m-2-2}{m-2-2}
                               \fhighlight[pink!20]{m-4-4}{m-4-4}
                               \fhighlight[lightgray!20]{m-5-5}{m-5-5}
                             \end{pgfonlayer}
                           \end{tikzpicture}
                           \exp{(\mathbf{F}_{k-1}^T (t_k-t'))}
                      dt'
\end{aligned}
\end{equation}

The exponential $ \mathbf{F} $ matrix shall be approximated by first order. This leads to:

\begin{equation} \label{eq:eq-LCKF_n-Q-GWGT-approx}
\begin{aligned}
  \mathbf{Q}_{k-1} &\approx \int_{t_k - \tau_s}^{t_k}
                                 \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
                                   \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                                               nodes={rectangle,text width=5.5em,align=center},row sep=0.3em, column sep=0.4em]
                                   {
                                     \mathbf{I}_3 + \mathbf{F}_{\delta \dotup{\psi},\delta \psi}^n \tau_s &                \mathbf{F}_{\delta \dotup{\psi},\delta v}^n \tau_s &                \mathbf{F}_{\delta \dotup{\psi},\delta r}^n \tau_s & \mathbf{0}_3          & \mathbf{C}_b^n \tau_s \\
                                                    \mathbf{F}_{\delta \dotup{v},\delta \psi}^n    \tau_s & \mathbf{I}_3 + \mathbf{F}_{\delta \dotup{v},\delta v}^n    \tau_s &                \mathbf{F}_{\delta \dotup{v},\delta r}^n    \tau_s & \mathbf{C}_b^n \tau_s & \mathbf{0}_3          \\
                                                    \mathbf{0}_3                                          &                \mathbf{F}_{\delta \dotup{r},\delta v}^n    \tau_s & \mathbf{I}_3 + \mathbf{F}_{\delta \dotup{r},\delta r}^n    \tau_s & \mathbf{0}_3          & \mathbf{0}_3          \\
                                                    \mathbf{0}_3                                          &                \mathbf{0}_3                                       &                \mathbf{0}_3                                       & \mathbf{I}_3          & \mathbf{0}_3          \\
                                                    \mathbf{0}_3                                          &                \mathbf{0}_3                                       &                \mathbf{0}_3                                       & \mathbf{0}_3          & \mathbf{I}_3          \\
                                   };

                                   \begin{pgfonlayer}{background}
                                     \fhighlight[green!20]{m-1-1}{m-1-1}
                                     \fhighlight[yellow!20]{m-1-2}{m-1-2}
                                     \fhighlight[lime!20]{m-1-3}{m-1-3}
                                     \fhighlight[orange!20]{m-1-5}{m-1-5}
                                     \fhighlight[purple!20]{m-2-1}{m-2-1}
                                     \fhighlight[blue!20]{m-2-2}{m-2-2}
                                     \fhighlight[violet!20]{m-2-3}{m-2-3}
                                     \fhighlight[red!20]{m-2-4}{m-2-4}
                                     \fhighlight[teal!20]{m-3-2}{m-3-2}
                                     \fhighlight[cyan!20]{m-3-3}{m-3-3}
                                   \end{pgfonlayer}
                                 \end{tikzpicture}
                                 \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
                                   \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                                               nodes={rectangle,text width=5em,align=center},row sep=0.3em, column sep=0.4em]
                                   {
                                     \mathbf{C}_b^n \mathbf{S}_{rg} \mathbf{C}_n^b &                \mathbf{0}_3                   & \mathbf{0}_3 & \mathbf{0}_3     & \mathbf{0}_3     \\
                                                    \mathbf{0}_3                   & \mathbf{C}_b^n \mathbf{S}_{ra} \mathbf{C}_n^b & \mathbf{0}_3 & \mathbf{0}_3     & \mathbf{0}_3     \\
                                                    \mathbf{0}_3                   &                \mathbf{0}_3                   & \mathbf{0}_3 & \mathbf{0}_3     & \mathbf{0}_3     \\
                                                    \mathbf{0}_3                   &                \mathbf{0}_3                   & \mathbf{0}_3 & \mathbf{S}_{bad} & \mathbf{0}_3     \\
                                                    \mathbf{0}_3                   &                \mathbf{0}_3                   & \mathbf{0}_3 & \mathbf{0}_3     & \mathbf{S}_{bgd} \\
                                   };

                                   \begin{pgfonlayer}{background}
                                     \fhighlight[darkgray!20]{m-1-1}{m-1-1}
                                     \fhighlight[brown!20]{m-2-2}{m-2-2}
                                     \fhighlight[pink!20]{m-4-4}{m-4-4}
                                     \fhighlight[lightgray!20]{m-5-5}{m-5-5}
                                   \end{pgfonlayer}
                                 \end{tikzpicture}
                                 \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
                                   \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                                               nodes={rectangle,text width=5.5em,align=center},row sep=0.3em, column sep=0.4em]
                                   {
                                     \mathbf{I}_3 + \mathbf{F}_{\delta \dotup{\psi},\delta \psi}^n \tau_s &                \mathbf{F}_{\delta \dotup{v},\delta \psi}^n \tau_s &                \mathbf{0}_3                                       & \mathbf{0}_3          &  \mathbf{0}_3          \\
                                                    \mathbf{F}_{\delta \dotup{\psi},\delta v}^n    \tau_s & \mathbf{I}_3 + \mathbf{F}_{\delta \dotup{v},\delta v}^n    \tau_s &                \mathbf{F}_{\delta \dotup{r},\delta v}^n    \tau_s & \mathbf{0}_3          &  \mathbf{0}_3          \\
                                                    \mathbf{F}_{\delta \dotup{\psi},\delta r}^n    \tau_s &                \mathbf{F}_{\delta \dotup{v},\delta r}^n    \tau_s & \mathbf{I}_3 + \mathbf{F}_{\delta \dotup{r},\delta r}^n    \tau_s & \mathbf{0}_3          &  \mathbf{0}_3          \\
                                                    \mathbf{0}_3                                          &                \mathbf{C}_b^n \tau_s                              &                \mathbf{0}_3                                       & \mathbf{I}_3          &  \mathbf{0}_3          \\
                                                    \mathbf{C}_b^n \tau_s                                 &                \mathbf{0}_3                                       &                \mathbf{0}_3                                       & \mathbf{0}_3          &  \mathbf{I}_3          \\
                                   };

                                   \begin{pgfonlayer}{background}
                                     \fhighlight[green!20]{m-1-1}{m-1-1}
                                     \fhighlight[yellow!20]{m-2-1}{m-2-1}
                                     \fhighlight[lime!20]{m-3-1}{m-3-1}
                                     \fhighlight[orange!20]{m-5-1}{m-5-1}
                                     \fhighlight[purple!20]{m-1-2}{m-1-2}
                                     \fhighlight[blue!20]{m-2-2}{m-2-2}
                                     \fhighlight[violet!20]{m-3-2}{m-3-2}
                                     \fhighlight[red!20]{m-4-2}{m-4-2}
                                     \fhighlight[teal!20]{m-2-3}{m-2-3}
                                     \fhighlight[cyan!20]{m-3-3}{m-3-3}
                                   \end{pgfonlayer}
                                 \end{tikzpicture}
                            dt'
\end{aligned}
\end{equation}

The final equation is

\begin{equation} \label{eq:eq-LCKF_n-Q-final}
  \mathbf{Q} =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                nodes={rectangle},row sep=0.3em, column sep=0.4em]
    {
      (\mathbf{S}_{rg}\tau_s + \frac{1}{3} \mathbf{S}_{bgd} \tau_s^3) \mathbf{I} & (\frac{1}{2} \mathbf{S}_{rg} \tau_s^2 + \frac{1}{4} \mathbf{S}_{bgd} \tau_s^4) \mathbf{F}_{\delta \dotup{v},\delta \psi}^n & \\
    };
  \end{tikzpicture}
\end{equation}

where

  • $ \tau_s $ is the propagation interval (as we trigger the prediction every time we get IMU measurements this corresponds to $ \tau_i $, the time between measurements)

see [17] Groves, ch. 14.2.6, eq. 14.80/14.81, p. 591

This method resembles a Taylor expansion up to 1. order. Since Groves [17] models the IMU measurements and their biases as random walk processes (see section Groves' process noise definition), only the van-Loan-method can be configured to model biases as Gauss-Markov 1. order processes.

Van Loan method

The state transition matrix and the system/process noise covariance matrix can be calculated with the van Loan method [48] . In short

  1. Form a $ 2n \times 2n $ matrix called $ \mathbf{A} $ ( $ n $ is the dimension of $ \mathbf{x} $ and $ \mathbf{W} $ is the power spectral density of the noise $ W(t) $)

    \begin{equation} \label{eq:eq-LCKF_n-Loan-A}
  \mathbf{A} = \begin{bmatrix} -\mathbf{F} & \mathbf{G} \mathbf{W} \mathbf{G}^T \\
                                \mathbf{0} &            \mathbf{F}^T          \end{bmatrix} \Delta t
\end{equation}

  2. Calculate the exponential of $ \mathbf{A} $

    \begin{equation} \label{eq:eq-LCKF_n-Loan-B}
  \mathbf{B} = \text{expm}(\mathbf{A}) = \left[ \begin{array}{c;{2pt/2pt}c}
                                            \dots          & \mathbf{\Phi}^{-1} \mathbf{Q} \\[2mm]
                                            \hdashline[2pt/2pt] &                                  \\[-2mm]
                                            \mathbf{0}          & \mathbf{\Phi}^T                     \end{array} \right]
                                       = \begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\
                                                         \mathbf{B}_{21} & \mathbf{B}_{22} \end{bmatrix}
\end{equation}

  3. Calculate the state transition matrix $ \mathbf{\Phi} $ as

    \begin{equation} \label{eq:eq-LCKF_n-Loan-Phi}
  \mathbf{\Phi} = \mathbf{B}_{22}^T
\end{equation}

  4. Calculate the process noise covariance matrix $ \mathbf{Q} $ as

    \begin{equation} \label{eq:eq-LCKF_n-Loan-Q}
  \mathbf{Q} = \mathbf{\Phi} \mathbf{B}_{12}
\end{equation}

Error covariance matrix P

The error covariance matrix is initialized as a diagonal matrix with the variance of the initial state as diagonal elements.

\begin{equation} \label{eq:eq-LCKF_n-P}
  \mathbf{P}_0 =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.4em,
                nodes={rectangle,text width=2.5em,align=center,minimum height=2.3em,anchor=center},] {
      \boldsymbol{\sigma}_{\boldsymbol{\delta \psi}}^2 &                                                 &                      \dots                      &                                                 &                        \mathbf{0}_3                       \\
                                                       & \boldsymbol{\sigma}_{\boldsymbol{\delta v^n}}^2 &                                                 &                    \iddots                      &                                                           \\
                           \vdots                      &                                                 & \boldsymbol{\sigma}_{\boldsymbol{\delta p_b}}^2 &                                                 &                          \vdots                           \\
                                                       &                    \iddots                      &                                                 & \boldsymbol{\sigma}_{\boldsymbol{\delta f^b}}^2 &                                                           \\
                        \mathbf{0}_3                   &                                                 &                      \dots                      &                                                 & \boldsymbol{\sigma}_{\boldsymbol{\delta \omega^b_{ib}}}^2 \\
    };

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-1-1}
      \fhighlight[blue!20]{m-2-2}{m-2-2}
      \fhighlight[cyan!20]{m-3-3}{m-3-3}
      \fhighlight[red!20]{m-4-4}{m-4-4}
      \fhighlight[orange!20]{m-5-5}{m-5-5}
    \end{pgfonlayer}
  \end{tikzpicture}
\end{equation}

Measurement innovation 𝛿z

\begin{equation} \label{eq:eq-LCKF_n-deltaz}
  \boldsymbol{\delta} \mathbf{z}^n = \begin{pmatrix} \tilde{\mathbf{p}}_{b,G} - \hat{\mathbf{p}}_{b} - \mathbf{T}_{r(n)}^{p} \mathbf{C}_b^n \mathbf{l}_{ba}^b \\
                                      \tilde{\mathbf{v}}^n_{G} - \hat{\mathbf{v}}^n - \mathbf{C}_b^n (\boldsymbol{\omega}_{ib}^b \times \mathbf{l}_{ba}^b) + \boldsymbol{\Omega}_{ie}^n \mathbf{C}_b^n \mathbf{l}_{ba}^b \end{pmatrix}
\end{equation}

where

  • $ G $ denotes GNSS indicated measurements
  • $ \mathbf{l}_{ba}^b $ is the lever arm from the INS to the GNSS antenna in [m]
  • $ \mathbf{T}_{r(n)}^{p} = \begin{pmatrix} \frac{1}{R_N + h} &               0               &  0 \\
                                                       0        & \frac{1}{(R_E + h)\cos{\phi}} &  0 \\
                                                       0        &               0               & -1 \end{pmatrix} $ is the Cartesian-to-curvilinear position change transformation matrix ([17] Groves, ch. 14.3.1, eq. 14.104, p. 598ff)

This form corresponds to

  • [17] Groves, ch. 14.3.1, eq. 14.103, p. 598

Measurement sensitivity Matrix H

\begin{equation} \label{eq:eq-LCKF_n-H-general}
  \mathbf{H}_k = \left. \frac{\partial \mathbf{h} (\mathbf{x}, t_k)}{\partial \mathbf{x}} \right|_{x = \hat{x}_k^{-}}
               = \left. \frac{\partial \mathbf{z} (\mathbf{x}, t_k)}{\partial \mathbf{x}} \right|_{x = \hat{x}_k^{-}}
\end{equation}

see

  • [17] Groves, ch. 3.4.1, eq. 3.90, p. 119

\begin{equation} \label{eq:eq-LCKF_n-H}
  \mathbf{H}^n =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.4em,
                nodes={rectangle,text width=2.5em,align=center,minimum height=2.3em,anchor=center},] {
      \mathbf{H}_{r,\delta \psi}^n &  \mathbf{0}_3 & -\mathbf{I}_3 & \mathbf{0}_3 & \mathbf{0}_3                          \\
      \mathbf{H}_{v,\delta \psi}^n & -\mathbf{I}_3 &  \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{H}_{\delta v,\omega_{ib}^b}^n \\
    };

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-1-1}
      \fhighlight[green!20]{m-2-1}{m-2-1}
      \fhighlight[blue!20]{m-2-2}{m-2-2}
      \fhighlight[cyan!20]{m-1-3}{m-1-3}
      \fhighlight[orange!20]{m-2-5}{m-2-5}
    \end{pgfonlayer}
  \end{tikzpicture}
\end{equation}

where

\begin{equation} \label{eq:eq-LCKF_n-H-sub}
\begin{aligned}
  \highlight[green!20]{\mathbf{H}_{r,\delta \psi}^n}    &\approx \mathbf{T}_{r(n)}^{p} \left[ (\mathbf{C}_b^n \mathbf{l}_{ba}^b) \times \right] \\
  \highlight[green!20]{\mathbf{H}_{v,\delta \psi}^n}    &\approx \left[ \left\{ \mathbf{C}_b^n (\boldsymbol{\omega}_{ib}^b \times \mathbf{l}_{ba}^b) - \boldsymbol{\Omega}_{ie}^n \mathbf{C}_b^n \mathbf{l}_{ba}^b \right\} \times \right] \\
  \highlight[orange!20]{\mathbf{H}_{v,\omega_{ib}^b}^n} &\approx \mathbf{C}_b^n \left[ \mathbf{l}_{ba}^b \times \right] \\
\end{aligned}
\end{equation}

See

  • [17] Groves, ch. 14.3.1, eq. 14.113/14.114, p. 600

Measurement noise covariance matrix R

The measurement noise covariance matrix is a diagonal matrix with the variances of the measurements as diagonal elements.

\begin{equation} \label{eq:eq-LCKF_n-R}
  \mathbf{R} = E \left( (\mathbf{z} - \mathbf{H} \mathbf{x})(\mathbf{z} - \mathbf{H} \mathbf{x})^T \right) =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.1em,
                nodes={rectangle,text width=2.2em,align=center,minimum height=2.3em,anchor=center},] {
      \sigma^2_{z_\phi} &          0           &       0        &         0          &         0          &         0          \\
              0         & \sigma^2_{z_\lambda} &       0        &         0          &         0          &         0          \\
              0         &          0           & \sigma^2_{z_h} &         0          &         0          &         0          \\
              0         &          0           &       0        & \sigma^2_{z_{v_N}} &         0          &         0          \\
              0         &          0           &       0        &         0          & \sigma^2_{z_{v_E}} &         0          \\
              0         &          0           &       0        &         0          &         0          & \sigma^2_{z_{v_D}} \\
    };

    \begin{pgfonlayer}{background}
      \fhighlight[cyan!20]{m-1-1}{m-1-1}
      \fhighlight[cyan!20]{m-2-2}{m-2-2}
      \fhighlight[cyan!20]{m-3-3}{m-3-3}
      \fhighlight[blue!20]{m-4-4}{m-4-4}
      \fhighlight[blue!20]{m-5-5}{m-5-5}
      \fhighlight[blue!20]{m-6-6}{m-6-6}
    \end{pgfonlayer}
  \end{tikzpicture}
\end{equation}

This variances can be set static or ideally come from the GNSS receiver.

Corrections

This section describes how the errors are applied to the total state.

Position, Velocity, Attitude

The position and velocity errors get applied by simply subtracting them from the previous total state (see [17] Groves, ch. 14.1.1, eq. 14.8, 14.10, p. 564)

\begin{equation} \label{eq:eq-LCKF_n-correction-position-velocity}
\begin{aligned}
  \boldsymbol{p}_b^{+} &= \boldsymbol{p}_b^{-} - \boldsymbol{\delta p}_b \\
  \boldsymbol{v}^{n,+} &= \boldsymbol{v}^{n,-} - \boldsymbol{\delta v}^{n}
\end{aligned}
\end{equation}

The attitude correction can be derived from equation \eqref{eq:eq-LCKF_n-Derivation-Attitude-estimate-errors} (see [17] Groves, ch. 14.1.1, eq. 14.7, p. 564)

\begin{equation} \label{eq:eq-LCKF_n-correction-attitude}
  \mathbf{C}_b^{n,+} = (\mathbf{I}_3 - [\boldsymbol{\delta \psi} \times]) \mathbf{C}_b^{n,-}
\end{equation}

After applying the errors to the total state, the errors have to be reset to zero (closed-loop).

Biases

To correct the accelerometer and gyroscope measurements, we need to accumulate the error states. This has to be done, because contrary to the normal state, the expected value of the biases is not zero.

\begin{equation} \label{eq:eq-LCKF_n-correction-accel-gyro-accumulate}
\begin{aligned}
  \boldsymbol{\Delta f}^{b,+}           &= \boldsymbol{\Delta f}^{b,-}           + \boldsymbol{\delta f}^b \\
  \boldsymbol{\Delta \omega}_{ib}^{b,+} &= \boldsymbol{\Delta \omega}_{ib}^{b,-} + \boldsymbol{\delta \omega}_{ib}^b
\end{aligned}
\end{equation}

Afterwards this accumulated value can be applied to the measurements by subtracting it

\begin{equation} \label{eq:eq-LCKF_n-correction-accel-gyro}
\begin{aligned}
  \boldsymbol{f}^{p,+}           &= \boldsymbol{f}^{p,-}           - \mathbf{C}_b^p \boldsymbol{\Delta f}^{b,+} \\
  \boldsymbol{\omega}_{ib}^{p,+} &= \boldsymbol{\omega}_{ib}^{p,-} - \mathbf{C}_b^p \boldsymbol{\Delta \omega}_{ib}^{b,+}
\end{aligned}
\end{equation}

Afterwards the bias in the error state gets reset to zero, as it is accounted for in the accumulated value.

Unit discussion

System matrix F

The units of the state vector $ \mathbf{x} $ and the $ \mathbf{F} $ matrix are as follows

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix-units}
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                nodes={rectangle,text width=1.6em,align=center,minimum height=2.3em,anchor=center},row sep=0.3em, column sep=0.1em,] {
      \delta \dotup{R}              & \left[ \frac{\text{rad}}{\text{s}} \right]   \\
      \delta \dotup{P}              & \left[ \frac{\text{rad}}{\text{s}} \right]   \\
      \delta \dotup{Y}              & \left[ \frac{\text{rad}}{\text{s}} \right]   \\
      \delta \dotup{v}_{N}          & \left[ \frac{\text{m}}{\text{s}^2} \right]   \\
      \delta \dotup{v}_{E}          & \left[ \frac{\text{m}}{\text{s}^2} \right]   \\
      \delta \dotup{v}_{D}          & \left[ \frac{\text{m}}{\text{s}^2} \right]   \\
      \delta \dotup{\phi}           & \left[ \frac{\text{rad}}{\text{s}} \right]   \\
      \delta \dotup{\lambda}        & \left[ \frac{\text{rad}}{\text{s}} \right]   \\
      \delta \dotup{h}              & \left[ \frac{\text{m}}{\text{s}} \right]     \\
      \delta \dotup{f}_{x}^{b}      & \left[ \frac{\text{m}}{\text{s}^3} \right]   \\
      \delta \dotup{f}_{y}^{b}      & \left[ \frac{\text{m}}{\text{s}^3} \right]   \\
      \delta \dotup{f}_{z}^{b}      & \left[ \frac{\text{m}}{\text{s}^3} \right]   \\
      \delta \dotup{\omega}_{x}^{b} & \left[ \frac{\text{rad}}{\text{s}^2} \right] \\
      \delta \dotup{\omega}_{y}^{b} & \left[ \frac{\text{rad}}{\text{s}^2} \right] \\
      \delta \dotup{\omega}_{z}^{b} & \left[ \frac{\text{rad}}{\text{s}^2} \right] \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\boldsymbol{\delta} \mathbf{\dotup{x}}$} (m-1-2.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-3-1}
      \fhighlight[blue!20]{m-4-1}{m-6-1}
      \fhighlight[cyan!20]{m-7-1}{m-9-1}
      \fhighlight[red!20]{m-10-1}{m-12-1}
      \fhighlight[orange!20]{m-13-1}{m-15-1}
    \end{pgfonlayer}
  \end{tikzpicture}
  =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},nodes in empty cells,
                row sep=0.3em, column sep=0.4em,
                nodes={rectangle,minimum height=2.3em,anchor=center},] {
               0                                                    &  \omega_{in,3}^{n} \left[ \frac{\text{rad}}{\text{s}} \right] & -\omega_{in,2}^{n} \left[ \frac{\text{rad}}{\text{s}} \right] &                             0                                                              &                    -\frac{1}{R_E + h}                     \left[ \frac{1}{\text{m}} \right] &                       0                                                        &                                    \omega_{ie}\sin{\phi}                                    \left[ \frac{\text{rad}}{\text{s}} \right] &      0       &                    \frac{v_E}{(R_E + h)^2}                   \left[ \frac{1}{\text{m} \cdot \text{s}} \right] &  &                                 &  &  &                                 & \\
      -\omega_{in,3}^{n} \left[ \frac{\text{rad}}{\text{s}} \right] &          0                                                    &  \omega_{in,1}^{n} \left[ \frac{\text{rad}}{\text{s}} \right] &                    \frac{1}{R_N + h}                     \left[ \frac{1}{\text{m}} \right] &                             0                                                               &                       0                                                        &                                             0                                                                                          &      0       &                   -\frac{v_N}{(R_N + h)^2}                   \left[ \frac{1}{\text{m} \cdot \text{s}} \right] &  &  \mathbf{0}_3                   &  &  & \mathbf{C}_b^n \left[ - \right] & \\
       \omega_{in,2}^{n} \left[ \frac{\text{rad}}{\text{s}} \right] & -\omega_{in,1}^{n} \left[ \frac{\text{rad}}{\text{s}} \right] &          0                                                    &                             0                                                              &                 \frac{\tan{\phi}}{R_E + h}                \left[ \frac{1}{\text{m}} \right] &                       0                                                        &                  \omega_{ie}\cos{\phi} + \frac{v_E}{(R_E + h)\cos^2{\phi}}                  \left[ \frac{\text{rad}}{\text{s}} \right] &      0       &              -\frac{v_E \tan{\phi}}{(R_E + h)^2}             \left[ \frac{1}{\text{m} \cdot \text{s}} \right] &  &                                 &  &  &                                 & \\
               0                                                    &         f_D        \left[ \frac{\text{m}}{\text{s}^2} \right] &        -f_E        \left[ \frac{\text{m}}{\text{s}^2} \right] &                    \frac{v_D}{R_N + h}                   \left[ \frac{1}{\text{s}} \right] & -2\frac{v_E \tan{\phi}}{R_E + h} - 2\omega_{ie}\sin{\phi} \left[ \frac{1}{\text{s}} \right] &              \frac{v_N}{R_N + h}             \left[ \frac{1}{\text{s}} \right] &                -\frac{v_E^2}{(R_E+h)\cos^2{\phi}}-2v_E\omega_{ie}\cos{\phi}                 \left[ \frac{\text{m}}{\text{s}^2} \right] &      0       & \frac{v_E^2\tan{\phi}}{(R_E+h)^2} - \frac{v_Nv_D}{(R_N+h)^2} \left[ \frac{1}{\text{s}^2} \right]              &  &                                 &  &  &                                 & \\
             -f_D        \left[ \frac{\text{m}}{\text{s}^2} \right] &          0                                                    &         f_N        \left[ \frac{\text{m}}{\text{s}^2} \right] &  \frac{v_E \tan{\phi}}{R_E + h} + 2\omega_{ie}\sin{\phi} \left[ \frac{1}{\text{s}} \right] &            \frac{v_N \tan{\phi} + v_D}{R_E + h}           \left[ \frac{1}{\text{s}} \right] & \frac{v_E}{R_E + h} + 2\omega_{ie}\cos{\phi} \left[ \frac{1}{\text{s}} \right] & \frac{v_N v_E}{(R_E+h)\cos^2{\phi}} + 2v_N\omega_{ie}\cos{\phi} - 2v_D\omega_{ie}\sin{\phi} \left[ \frac{\text{m}}{\text{s}^2} \right] &      0       &        -\frac{v_Nv_E\tan{\phi} + v_Ev_D}{(R_E + h)^2}        \left[ \frac{1}{\text{s}^2} \right]              &  & \mathbf{C}_b^n \left[ - \right] &  &  &  \mathbf{0}_3                   & \\
              f_E        \left[ \frac{\text{m}}{\text{s}^2} \right] &        -f_N        \left[ \frac{\text{m}}{\text{s}^2} \right] &          0                                                    &                  -\frac{2v_N}{R_N + h}                   \left[ \frac{1}{\text{s}} \right] &       -\frac{2v_E}{R_E + h} - 2\omega_{ie}\cos{\phi}      \left[ \frac{1}{\text{s}} \right] &                       0                                                        &                                  2v_E\omega_{ie}\sin{\phi}                                  \left[ \frac{\text{m}}{\text{s}^2} \right] &      0       &     \frac{v_E^2}{(R_E + h)^2} + \frac{v_N^2}{(R_N + h)^2}    \left[ \frac{1}{\text{s}^2} \right]              &  &                                 &  &  &                                 & \\
                                                                    &                                                               &                                                               &                      \frac{1}{R_N+h}                     \left[ \frac{1}{\text{m}} \right] &                             0                                                               &                       0                                                        &                                             0                                                                                          &      0       &                   -\frac{v_N}{(R_N + h)^2}                   \left[ \frac{1}{\text{m} \cdot \text{s}} \right] &  &                                 &  &  &                                 & \\
                                                                    &    \mathbf{0}_3                                               &                                                               &                             0                                                              &                \frac{1}{(R_E+h)\cos{\phi}}                \left[ \frac{1}{\text{m}} \right] &                       0                                                        &                           \frac{v_E\tan{\phi}}{(R_E+h)\cos{\phi}}                           \left[ \frac{1}{\text{s}} \right]          &      0       &              -\frac{v_E}{(R_E + h)^2\cos{\phi}}              \left[ \frac{1}{\text{m} \cdot \text{s}} \right] &  &  \mathbf{0}_3                   &  &  &  \mathbf{0}_3                   & \\
                                                                    &                                                               &                                                               &                             0                                                              &                             0                                                               &                      -1                      \left[ - \right]                  &                                             0                                                                                          &      0       &                               0                                                                               &  &                                 &  &  &                                 & \\
                                                                    &                                                               &                                                               &                                                                                            &                                                                                             &                                                                                &                                                                                                                                        &              &                                                                                                               &  &                                 &  &  &                                 & \\
                                                                    &    \mathbf{0}_3                                               &                                                               &                                                                                            &                       \mathbf{0}_3                                                          &                                                                                &                                                                                                                                        & \mathbf{0}_3 &                                                                                                               &  &  \mathbf{0}_3                   &  &  &  \mathbf{0}_3                   & \\
                                                                    &                                                               &                                                               &                                                                                            &                                                                                             &                                                                                &                                                                                                                                        &              &                                                                                                               &  &                                 &  &  &                                 & \\
                                                                    &                                                               &                                                               &                                                                                            &                                                                                             &                                                                                &                                                                                                                                        &              &                                                                                                               &  &                                 &  &  &                                 & \\
                                                                    &    \mathbf{0}_3                                               &                                                               &                                                                                            &                       \mathbf{0}_3                                                          &                                                                                &                                                                                                                                        & \mathbf{0}_3 &                                                                                                               &  &  \mathbf{0}_3                   &  &  &  \mathbf{0}_3                   & \\
                                                                    &                                                               &                                                               &                                                                                            &                                                                                             &                                                                                &                                                                                                                                        &              &                                                                                                               &  &                                 &  &  &                                 & \\
    };

    \foreach \r in {1,3,4,6,7,9} {
      \foreach \c in {1,3,4,6,7,9,10,12,13,15} {
        \coordinate (m-\r-\c-nw) at (100,-100);
        \coordinate (m-\r-\c-se) at (-100,100);

        \foreach \row in {1,...,9} {
          \path let \p1=(m-\row-\c.west), \p2=(m-\r-\c-nw) in coordinate (m-\r-\c-nw) at ({min(\x1,\x2)},\y2);
          \path let \p1=(m-\row-\c.east), \p2=(m-\r-\c-se) in coordinate (m-\r-\c-se) at ({max(\x1,\x2)},\y2);
        }
        \foreach \col in {1,...,15} {
          \path let \p1=(m-\r-\col.north), \p2=(m-\r-\c-nw) in coordinate (m-\r-\c-nw) at (\x2,{max(\y1,\y2)});
          \path let \p1=(m-\r-\col.south), \p2=(m-\r-\c-se) in coordinate (m-\r-\c-se) at (\x2,{min(\y1,\y2)});
        }
      }
    }

    \path let \p1=(m-1-1-nw), \p2=(m-1-15-se) in coordinate (m-1-15-ne) at (\x2,\y1);
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1-nw) -- node[above=2pt] {$\mathbf{F}$} (m-1-15-ne);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1-nw}{m-3-3-se}
      \fhighlight[yellow!20]{m-1-4-nw}{m-3-6-se}
      \fhighlight[lime!20]{m-1-7-nw}{m-3-9-se}
      \fhighlight[orange!20]{m-1-13-nw}{m-3-15-se}
      \fhighlight[purple!20]{m-4-1-nw}{m-6-3-se}
      \fhighlight[blue!20]{m-4-4-nw}{m-6-6-se}
      \fhighlight[violet!20]{m-4-7-nw}{m-6-9-se}
      \fhighlight[red!20]{m-4-10-nw}{m-6-12-se}
      \fhighlight[teal!20]{m-7-4-nw}{m-9-6-se}
      \fhighlight[cyan!20]{m-7-7-nw}{m-9-9-se}
    \end{pgfonlayer}
  \end{tikzpicture}
  \cdot
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.1em,
                nodes={rectangle,text width=1.6em,align=center,minimum height=2.3em,anchor=center},] {
      \delta R              & \left[ \text{rad} \right]                  \\
      \delta P              & \left[ \text{rad} \right]                  \\
      \delta Y              & \left[ \text{rad} \right]                  \\
      \delta v_{N}          & \left[ \frac{\text{m}}{\text{s}} \right]   \\
      \delta v_{E}          & \left[ \frac{\text{m}}{\text{s}} \right]   \\
      \delta v_{D}          & \left[ \frac{\text{m}}{\text{s}} \right]   \\
      \delta \phi           & \left[ \text{rad} \right]                  \\
      \delta \lambda        & \left[ \text{rad} \right]                  \\
      \delta h              & \left[ \text{m} \right]                    \\
      \delta f_{x}^{b}      & \left[ \frac{\text{m}}{\text{s}^2} \right] \\
      \delta f_{y}^{b}      & \left[ \frac{\text{m}}{\text{s}^2} \right] \\
      \delta f_{z}^{b}      & \left[ \frac{\text{m}}{\text{s}^2} \right] \\
      \delta \omega_{x}^{b} & \left[ \frac{\text{rad}}{\text{s}} \right] \\
      \delta \omega_{y}^{b} & \left[ \frac{\text{rad}}{\text{s}} \right] \\
      \delta \omega_{z}^{b} & \left[ \frac{\text{rad}}{\text{s}} \right] \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\boldsymbol{\delta} x\mathbf{}$} (m-1-2.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-3-1}
      \fhighlight[blue!20]{m-4-1}{m-6-1}
      \fhighlight[cyan!20]{m-7-1}{m-9-1}
      \fhighlight[red!20]{m-10-1}{m-12-1}
      \fhighlight[orange!20]{m-13-1}{m-15-1}
    \end{pgfonlayer}
  \end{tikzpicture}
\end{equation}

When scaling elements in $ \boldsymbol{\delta} \mathbf{x} $ the relevant parts of the $ \mathbf{F} $ matrix have to be scaled as well.

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix-units-scaled}
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                nodes={rectangle,text width=2.4em,align=center,minimum height=2.3em,anchor=center},row sep=0.3em, column sep=0.1em,] {
      \delta \dotup{R}              & \left[ \highlight[red!60]{\frac{\text{deg}}{\text{s}}} \right]    \\
      \delta \dotup{P}              & \left[ \highlight[red!60]{\frac{\text{deg}}{\text{s}}} \right]    \\
      \delta \dotup{Y}              & \left[ \highlight[red!60]{\frac{\text{deg}}{\text{s}}} \right]    \\
      \delta \dotup{v}_{N}          & \left[ \frac{\text{m}}{\text{s}^2} \right]                        \\
      \delta \dotup{v}_{E}          & \left[ \frac{\text{m}}{\text{s}^2} \right]                        \\
      \delta \dotup{v}_{D}          & \left[ \frac{\text{m}}{\text{s}^2} \right]                        \\
      \delta \dotup{\phi}           & \left[ \highlight[red!60]{\frac{\text{m'}}{\text{s}}} \right]     \\
      \delta \dotup{\lambda}        & \left[ \highlight[red!60]{\frac{\text{m'}}{\text{s}}} \right]     \\
      \delta \dotup{h}              & \left[ \frac{\text{m}}{\text{s}} \right]                          \\
      \delta \dotup{f}_{x}^{b}      & \left[ \highlight[red!60]{\frac{\text{mg}}{\text{s}}} \right]     \\
      \delta \dotup{f}_{y}^{b}      & \left[ \highlight[red!60]{\frac{\text{mg}}{\text{s}}} \right]     \\
      \delta \dotup{f}_{z}^{b}      & \left[ \highlight[red!60]{\frac{\text{mg}}{\text{s}}} \right]     \\
      \delta \dotup{\omega}_{x}^{b} & \left[ \highlight[red!60]{\frac{\text{mrad}}{\text{s}^2}} \right] \\
      \delta \dotup{\omega}_{y}^{b} & \left[ \highlight[red!60]{\frac{\text{mrad}}{\text{s}^2}} \right] \\
      \delta \dotup{\omega}_{z}^{b} & \left[ \highlight[red!60]{\frac{\text{mrad}}{\text{s}^2}} \right] \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\boldsymbol{\delta} \mathbf{\dotup{x}}$} (m-1-2.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-3-1}
      \fhighlight[blue!20]{m-4-1}{m-6-1}
      \fhighlight[cyan!20]{m-7-1}{m-9-1}
      \fhighlight[red!20]{m-10-1}{m-12-1}
      \fhighlight[orange!20]{m-13-1}{m-15-1}
    \end{pgfonlayer}
  \end{tikzpicture}
  =
  \quad
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},nodes in empty cells,
                row sep=0.3em, column sep=0.4em,
                nodes={rectangle,minimum height=2.3em,anchor=center},] {
               0                                                    &  \omega_{in,3}^{n} \left[ \frac{\text{rad}}{\text{s}} \right] & -\omega_{in,2}^{n} \left[ \frac{\text{rad}}{\text{s}} \right] &                             0                                                              &                    -\frac{1}{R_E + h}                     \left[ \frac{1}{\text{m}} \right] &                       0                                                        &                                    \omega_{ie}\sin{\phi}                                    \left[ \frac{\text{rad}}{\text{s}} \right] &      0       &                    \frac{v_E}{(R_E + h)^2}                   \left[ \frac{1}{\text{m} \cdot \text{s}} \right] &  &                                 &  &  &                                 & \\
      -\omega_{in,3}^{n} \left[ \frac{\text{rad}}{\text{s}} \right] &          0                                                    &  \omega_{in,1}^{n} \left[ \frac{\text{rad}}{\text{s}} \right] &                    \frac{1}{R_N + h}                     \left[ \frac{1}{\text{m}} \right] &                             0                                                               &                       0                                                        &                                             0                                                                                          &      0       &                   -\frac{v_N}{(R_N + h)^2}                   \left[ \frac{1}{\text{m} \cdot \text{s}} \right] &  &  \mathbf{0}_3                   &  &  & \mathbf{C}_b^n \left[ - \right] & \\
       \omega_{in,2}^{n} \left[ \frac{\text{rad}}{\text{s}} \right] & -\omega_{in,1}^{n} \left[ \frac{\text{rad}}{\text{s}} \right] &          0                                                    &                             0                                                              &                 \frac{\tan{\phi}}{R_E + h}                \left[ \frac{1}{\text{m}} \right] &                       0                                                        &                  \omega_{ie}\cos{\phi} + \frac{v_E}{(R_E + h)\cos^2{\phi}}                  \left[ \frac{\text{rad}}{\text{s}} \right] &      0       &              -\frac{v_E \tan{\phi}}{(R_E + h)^2}             \left[ \frac{1}{\text{m} \cdot \text{s}} \right] &  &                                 &  &  &                                 & \\
               0                                                    &         f_D        \left[ \frac{\text{m}}{\text{s}^2} \right] &        -f_E        \left[ \frac{\text{m}}{\text{s}^2} \right] &                    \frac{v_D}{R_N + h}                   \left[ \frac{1}{\text{s}} \right] & -2\frac{v_E \tan{\phi}}{R_E + h} - 2\omega_{ie}\sin{\phi} \left[ \frac{1}{\text{s}} \right] &              \frac{v_N}{R_N + h}             \left[ \frac{1}{\text{s}} \right] &                -\frac{v_E^2}{(R_E+h)\cos^2{\phi}}-2v_E\omega_{ie}\cos{\phi}                 \left[ \frac{\text{m}}{\text{s}^2} \right] &      0       & \frac{v_E^2\tan{\phi}}{(R_E+h)^2} - \frac{v_Nv_D}{(R_N+h)^2} \left[ \frac{1}{\text{s}^2} \right]              &  &                                 &  &  &                                 & \\
             -f_D        \left[ \frac{\text{m}}{\text{s}^2} \right] &          0                                                    &         f_N        \left[ \frac{\text{m}}{\text{s}^2} \right] &  \frac{v_E \tan{\phi}}{R_E + h} + 2\omega_{ie}\sin{\phi} \left[ \frac{1}{\text{s}} \right] &            \frac{v_N \tan{\phi} + v_D}{R_E + h}           \left[ \frac{1}{\text{s}} \right] & \frac{v_E}{R_E + h} + 2\omega_{ie}\cos{\phi} \left[ \frac{1}{\text{s}} \right] & \frac{v_N v_E}{(R_E+h)\cos^2{\phi}} + 2v_N\omega_{ie}\cos{\phi} - 2v_D\omega_{ie}\sin{\phi} \left[ \frac{\text{m}}{\text{s}^2} \right] &      0       &        -\frac{v_Nv_E\tan{\phi} + v_Ev_D}{(R_E + h)^2}        \left[ \frac{1}{\text{s}^2} \right]              &  & \mathbf{C}_b^n \left[ - \right] &  &  &  \mathbf{0}_3                   & \\
              f_E        \left[ \frac{\text{m}}{\text{s}^2} \right] &        -f_N        \left[ \frac{\text{m}}{\text{s}^2} \right] &          0                                                    &                  -\frac{2v_N}{R_N + h}                   \left[ \frac{1}{\text{s}} \right] &       -\frac{2v_E}{R_E + h} - 2\omega_{ie}\cos{\phi}      \left[ \frac{1}{\text{s}} \right] &                       0                                                        &                                  2v_E\omega_{ie}\sin{\phi}                                  \left[ \frac{\text{m}}{\text{s}^2} \right] &      0       &     \frac{v_E^2}{(R_E + h)^2} + \frac{v_N^2}{(R_N + h)^2}    \left[ \frac{1}{\text{s}^2} \right]              &  &                                 &  &  &                                 & \\
                                                                    &                                                               &                                                               &                      \frac{1}{R_N+h}                     \left[ \frac{1}{\text{m}} \right] &                             0                                                               &                       0                                                        &                                             0                                                                                          &      0       &                   -\frac{v_N}{(R_N + h)^2}                   \left[ \frac{1}{\text{m} \cdot \text{s}} \right] &  &                                 &  &  &                                 & \\
                                                                    &    \mathbf{0}_3                                               &                                                               &                             0                                                              &                \frac{1}{(R_E+h)\cos{\phi}}                \left[ \frac{1}{\text{m}} \right] &                       0                                                        &                           \frac{v_E\tan{\phi}}{(R_E+h)\cos{\phi}}                           \left[ \frac{1}{\text{s}} \right]          &      0       &              -\frac{v_E}{(R_E + h)^2\cos{\phi}}              \left[ \frac{1}{\text{m} \cdot \text{s}} \right] &  &  \mathbf{0}_3                   &  &  &  \mathbf{0}_3                   & \\
                                                                    &                                                               &                                                               &                             0                                                              &                             0                                                               &                      -1                      \left[ - \right]                  &                                             0                                                                                          &      0       &                               0                                                                               &  &                                 &  &  &                                 & \\
                                                                    &                                                               &                                                               &                                                                                            &                                                                                             &                                                                                &                                                                                                                                        &              &                                                                                                               &  &                                 &  &  &                                 & \\
                                                                    &    \mathbf{0}_3                                               &                                                               &                                                                                            &                       \mathbf{0}_3                                                          &                                                                                &                                                                                                                                        & \mathbf{0}_3 &                                                                                                               &  &  \mathbf{0}_3                   &  &  &  \mathbf{0}_3                   & \\
                                                                    &                                                               &                                                               &                                                                                            &                                                                                             &                                                                                &                                                                                                                                        &              &                                                                                                               &  &                                 &  &  &                                 & \\
                                                                    &                                                               &                                                               &                                                                                            &                                                                                             &                                                                                &                                                                                                                                        &              &                                                                                                               &  &                                 &  &  &                                 & \\
                                                                    &    \mathbf{0}_3                                               &                                                               &                                                                                            &                       \mathbf{0}_3                                                          &                                                                                &                                                                                                                                        & \mathbf{0}_3 &                                                                                                               &  &  \mathbf{0}_3                   &  &  &  \mathbf{0}_3                   & \\
                                                                    &                                                               &                                                               &                                                                                            &                                                                                             &                                                                                &                                                                                                                                        &              &                                                                                                               &  &                                 &  &  &                                 & \\
    };

    \foreach \r in {1,3,4,6,7,8,9,10,12,13,15} {
      \foreach \c in {1,3,4,6,7,8,9,10,12,13,15} {
        \coordinate (m-\r-\c-nw) at (100,-100);
        \coordinate (m-\r-\c-ne) at (-100,-100);
        \coordinate (m-\r-\c-se) at (-100,100);
        \coordinate (m-\r-\c-sw) at (100,100);

        \foreach \row in {1,...,9} {
          \path let \p1=(m-\row-\c.west), \p2=(m-\r-\c-nw) in coordinate (m-\r-\c-nw) at ({min(\x1,\x2)},\y2);
          \path let \p1=(m-\row-\c.east), \p2=(m-\r-\c-ne) in coordinate (m-\r-\c-ne) at ({max(\x1,\x2)},\y2);
          \path let \p1=(m-\row-\c.east), \p2=(m-\r-\c-se) in coordinate (m-\r-\c-se) at ({max(\x1,\x2)},\y2);
          \path let \p1=(m-\row-\c.west), \p2=(m-\r-\c-sw) in coordinate (m-\r-\c-sw) at ({min(\x1,\x2)},\y2);
        }
        \foreach \col in {1,...,15} {
          \path let \p1=(m-\r-\col.north), \p2=(m-\r-\c-nw) in coordinate (m-\r-\c-nw) at (\x2,{max(\y1,\y2)});
          \path let \p1=(m-\r-\col.north), \p2=(m-\r-\c-ne) in coordinate (m-\r-\c-ne) at (\x2,{max(\y1,\y2)});
          \path let \p1=(m-\r-\col.south), \p2=(m-\r-\c-se) in coordinate (m-\r-\c-se) at (\x2,{min(\y1,\y2)});
          \path let \p1=(m-\r-\col.south), \p2=(m-\r-\c-sw) in coordinate (m-\r-\c-sw) at (\x2,{min(\y1,\y2)});
        }
      }
    }

    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1-nw) -- node[above=2pt] {$\mathbf{F}$} (m-1-15-ne);

    \draw[decorate,transform canvas={xshift=-1.4em},thick,red] (m-3-1-sw) -- node[left=2pt] {$ \times \frac{180}{\pi} $} (m-1-1-nw);
    \draw[decorate,transform canvas={xshift=-1.4em},thick,red] (m-8-1-sw) -- node[left=2pt] {$ \times R_0 $} (m-7-1-nw);
    \draw[decorate,transform canvas={xshift=-1.4em},thick,red] (m-12-1-sw) -- node[left=2pt] {$ \times \frac{10^3}{g} $} (m-10-1-nw);
    \draw[decorate,transform canvas={xshift=-1.4em},thick,red] (m-15-1-sw) -- node[left=2pt] {$ \times 10^3 $} (m-13-1-nw);

    \draw[decorate,transform canvas={yshift=1.1em},thick,red] (m-1-1-nw) -- node[above=2pt] {$ \times \frac{\pi}{180} $} (m-1-3-ne);
    \draw[decorate,transform canvas={yshift=1.1em},thick,red] (m-1-7-nw) -- node[above=2pt] {$ \times \frac{1}{R_0} $} (m-1-8-ne);
    \draw[decorate,transform canvas={yshift=1.1em},thick,red] (m-1-10-nw) -- node[above=2pt] {$ \times \frac{g}{10^3} $} (m-1-12-ne);
    \draw[decorate,transform canvas={yshift=1.1em},thick,red] (m-1-13-nw) -- node[above=2pt] {$ \times 10^{-3} $} (m-1-15-ne);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1-nw}{m-3-3-se}
      \fhighlight[yellow!20]{m-1-4-nw}{m-3-6-se}
      \fhighlight[lime!20]{m-1-7-nw}{m-3-9-se}
      \fhighlight[orange!20]{m-1-13-nw}{m-3-15-se}
      \fhighlight[purple!20]{m-4-1-nw}{m-6-3-se}
      \fhighlight[blue!20]{m-4-4-nw}{m-6-6-se}
      \fhighlight[violet!20]{m-4-7-nw}{m-6-9-se}
      \fhighlight[red!20]{m-4-10-nw}{m-6-12-se}
      \fhighlight[teal!20]{m-7-4-nw}{m-9-6-se}
      \fhighlight[cyan!20]{m-7-7-nw}{m-9-9-se}
    \end{pgfonlayer}
  \end{tikzpicture}
  \cdot
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.1em,
                nodes={rectangle,text width=2.4em,align=center,minimum height=2.3em,anchor=center},] {
      \delta R              & \left[ \highlight[red!60]{\text{deg}} \right]                   \\
      \delta P              & \left[ \highlight[red!60]{\text{deg}} \right]                   \\
      \delta Y              & \left[ \highlight[red!60]{\text{deg}} \right]                   \\
      \delta v_{N}          & \left[ \frac{\text{m}}{\text{s}} \right]                        \\
      \delta v_{E}          & \left[ \frac{\text{m}}{\text{s}} \right]                        \\
      \delta v_{D}          & \left[ \frac{\text{m}}{\text{s}} \right]                        \\
      \delta \phi           & \left[ \highlight[red!60]{\text{m'}} \right]                    \\
      \delta \lambda        & \left[ \highlight[red!60]{\text{m'}} \right]                    \\
      \delta h              & \left[ \text{m} \right]                                         \\
      \delta f_{x}^{b}      & \left[ \highlight[red!60]{\text{mg}} \right]                    \\
      \delta f_{y}^{b}      & \left[ \highlight[red!60]{\text{mg}} \right]                    \\
      \delta f_{z}^{b}      & \left[ \highlight[red!60]{\text{mg}} \right]                    \\
      \delta \omega_{x}^{b} & \left[ \highlight[red!60]{\frac{\text{mrad}}{\text{s}}} \right] \\
      \delta \omega_{y}^{b} & \left[ \highlight[red!60]{\frac{\text{mrad}}{\text{s}}} \right] \\
      \delta \omega_{z}^{b} & \left[ \highlight[red!60]{\frac{\text{mrad}}{\text{s}}} \right] \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\boldsymbol{\delta} \mathbf{x}$} (m-1-2.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-3-1}
      \fhighlight[blue!20]{m-4-1}{m-6-1}
      \fhighlight[cyan!20]{m-7-1}{m-9-1}
      \fhighlight[red!20]{m-10-1}{m-12-1}
      \fhighlight[orange!20]{m-13-1}{m-15-1}
    \end{pgfonlayer}
  \end{tikzpicture}
\end{equation}

The unit $ m' $ is [pseudometre] and is latitude or longitude converted from radian into metre by multiplying it with the Earth radius. However the radius is assumed as a constant for the conversion.

Gauss-Markov constant 𝛽 & Noise scale matrix G

If a bias state is modeled by a Gauss-Markov first order process instead of random walk, the deterministic part of the equation is extended.

\begin{equation} \label{eq:eq-LCKF_n-Units-noise}
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,nodes in empty cells,left delimiter={(},right delimiter={)},
                nodes={rectangle,text width=1.8em,align=center},row sep=0.3em, column sep=0.1em] {
      \boldsymbol{\delta \dotup{\psi}}                                     & \left[ \frac{\text{rad}}{\text{s}} \right]   \\
      \boldsymbol{\delta \dotup{v}}^{n}                                    & \left[ \frac{\text{m}}{\text{s}^2} \right]   \\
      \boldsymbol{\delta \dotup{p}}_b                                      & \dots                                        \\
      \boldsymbol{\delta \dotup{f}}^{\raise-0.45ex\hbox{$\scriptstyle b$}} & \left[ \frac{\text{m}}{\text{s}^3} \right]   \\
      \boldsymbol{\delta \dotup{\omega}}_{ib}^b                            & \left[ \frac{\text{rad}}{\text{s}^2} \right] \\
    };
    \draw[decorate,transform canvas={yshift=0.6em},thick] (m-1-1.north west) -- node[above=2pt] {$\boldsymbol{\delta} \mathbf{\dotup{x}}$} ($ (m-1-2.north east) + (0,1pt) $);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-1-1}
      \fhighlight[blue!20]{m-2-1}{m-2-1}
      \fhighlight[cyan!20]{m-3-1}{m-3-1}
      \fhighlight[red!20]{m-4-1}{m-4-1}
      \fhighlight[orange!20]{m-5-1}{m-5-1}
    \end{pgfonlayer}
  \end{tikzpicture}
  =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                nodes={rectangle,text width=3.3em,align=center},row sep=0.3em, column sep=0.4em]
    {
          \dots    &     \dots    &     \dots    &        \dots                                           &           \dots                                              \\
          \dots    &     \dots    &     \dots    &        \dots                                           &           \dots                                              \\
          \dots    &     \dots    &     \dots    &        \dots                                           &           \dots                                              \\
      \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & -\boldsymbol{\beta}_f \left[ \frac{1}{\text{s}} \right] &        \mathbf{0}_3                                          \\
      \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 &    \mathbf{0}_3                                        &  -\boldsymbol{\beta}_\omega \left[ \frac{1}{\text{s}} \right] \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\mathbf{F}$} (m-1-5.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[magenta!20]{m-4-4}{m-4-4}
      \fhighlight[olive!20]{m-5-5}{m-5-5}
    \end{pgfonlayer}
  \end{tikzpicture}
  \cdot
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,nodes in empty cells,left delimiter={(},right delimiter={)},
                nodes={rectangle,text width=1.8em,align=center},row sep=0.3em, column sep=0.1em] {
      \boldsymbol{\delta \psi}          & \left[ \text{rad} \right]                  \\
      \boldsymbol{\delta v}^{n}         & \left[ \frac{\text{m}}{\text{s}} \right]   \\
      \boldsymbol{\delta p}_b           & \dots                                      \\
      \boldsymbol{\delta f}^b           & \left[ \frac{\text{m}}{\text{s}^2} \right] \\
      \boldsymbol{\delta \omega}_{ib}^b & \left[ \frac{\text{rad}}{\text{s}} \right] \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\boldsymbol{\delta} \mathbf{x}$} (m-1-2.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-1-1}
      \fhighlight[blue!20]{m-2-1}{m-2-1}
      \fhighlight[cyan!20]{m-3-1}{m-3-1}
      \fhighlight[red!20]{m-4-1}{m-4-1}
      \fhighlight[orange!20]{m-5-1}{m-5-1}
    \end{pgfonlayer}
  \end{tikzpicture}
  +
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                nodes={rectangle,text width=4.8em,align=center},row sep=0.3em, column sep=0.4em]
    {
      \mathbf{C}_b^n & \mathbf{0}_3   & \mathbf{0}_3 & \mathbf{0}_3 \\
       \mathbf{0}_3   & \mathbf{C}_b^n & \mathbf{0}_3 & \mathbf{0}_3 \\
       \mathbf{0}_3   & \mathbf{0}_3   & \mathbf{0}_3 & \mathbf{0}_3 \\
       \mathbf{0}_3   & \mathbf{0}_3   & \mathbf{I}_3 & \mathbf{0}_3 \\
       \mathbf{0}_3   & \mathbf{0}_3   & \mathbf{0}_3 & \mathbf{I}_3 \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\mathbf{G}$} (m-1-2.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[darkgray!20]{m-1-1}{m-1-1}
      \fhighlight[brown!20]{m-2-2}{m-2-2}
      \fhighlight[pink!20]{m-4-3}{m-4-3}
      \fhighlight[lightgray!20]{m-5-4}{m-5-4}
    \end{pgfonlayer}
  \end{tikzpicture}
  \cdot
  \mathbf{w} \left[ \frac{1}{\sqrt{\text{s}}} \right]
\end{equation}

When scaling the biases in $ \boldsymbol{\delta} \mathbf{x} $ the $ \mathbf{\beta} $ factors stay unscaled. However the $ \mathbf{G} $ matrix has to be adapted.

\begin{equation} \label{eq:eq-LCKF_n-Units-noise-scaled}
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,nodes in empty cells,left delimiter={(},right delimiter={)},
                nodes={rectangle,text width=2.4em,align=center},row sep=0.3em, column sep=0.1em] {
      \boldsymbol{\delta \dotup{\psi}}                                     & \left[ \highlight[red!60]{\text{deg}} \right]                     \\
      \boldsymbol{\delta \dotup{v}}^{n}                                    & \left[ \frac{\text{m}}{\text{s}^2} \right]                        \\
      \boldsymbol{\delta \dotup{p}}_b                                      & \dots                                                             \\
      \boldsymbol{\delta \dotup{f}}^{\raise-0.45ex\hbox{$\scriptstyle b$}} & \left[ \highlight[red!60]{\frac{\text{mg}}{\text{s}}} \right]     \\
      \boldsymbol{\delta \dotup{\omega}}_{ib}^b                            & \left[ \highlight[red!60]{\frac{\text{mrad}}{\text{s}^2}} \right] \\
    };
    \draw[decorate,transform canvas={yshift=0.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\boldsymbol{\delta} \mathbf{\dotup{x}}$} ($ (m-1-2.north east) - (0,2pt) $);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-1-1}
      \fhighlight[blue!20]{m-2-1}{m-2-1}
      \fhighlight[cyan!20]{m-3-1}{m-3-1}
      \fhighlight[red!20]{m-4-1}{m-4-1}
      \fhighlight[orange!20]{m-5-1}{m-5-1}
    \end{pgfonlayer}
  \end{tikzpicture}
  =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                nodes={rectangle,text width=3.3em,align=center},row sep=0.3em, column sep=0.4em]
    {
          \dots    &     \dots    &     \dots    &        \dots                                           &           \dots                                              \\
          \dots    &     \dots    &     \dots    &        \dots                                           &           \dots                                              \\
          \dots    &     \dots    &     \dots    &        \dots                                           &           \dots                                              \\
      \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & -\boldsymbol{\beta}_f \left[ \frac{1}{\text{s}} \right] &        \mathbf{0}_3                                          \\
      \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 &    \mathbf{0}_3                                        &  -\boldsymbol{\beta}_\omega \left[ \frac{1}{\text{s}} \right] \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\mathbf{F}$} (m-1-5.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[magenta!20]{m-4-4}{m-4-4}
      \fhighlight[olive!20]{m-5-5}{m-5-5}
    \end{pgfonlayer}
  \end{tikzpicture}
  \cdot
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,nodes in empty cells,left delimiter={(},right delimiter={)},
                nodes={rectangle,text width=2.4em,align=center},row sep=0.3em, column sep=0.1em] {
      \boldsymbol{\delta \dotup{\psi}}    & \left[ \highlight[red!60]{\frac{\text{deg}}{\text{s}}} \right]  \\
      \boldsymbol{\delta \dotup{v}}^{n}   & \left[ \frac{\text{m}}{\text{s}^2} \right]   \\
      \boldsymbol{\delta \dotup{p}}_b     & \dots                                        \\
      \boldsymbol{\delta f}^b           & \left[ \highlight[red!60]{\text{mg}} \right]                    \\
      \boldsymbol{\delta \omega}_{ib}^b & \left[ \highlight[red!60]{\frac{\text{mrad}}{\text{s}}} \right] \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\boldsymbol{\delta} \mathbf{x}$} ($ (m-1-2.north east) - (0,3pt) $);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-1-1}
      \fhighlight[blue!20]{m-2-1}{m-2-1}
      \fhighlight[cyan!20]{m-3-1}{m-3-1}
      \fhighlight[red!20]{m-4-1}{m-4-1}
      \fhighlight[orange!20]{m-5-1}{m-5-1}
    \end{pgfonlayer}
  \end{tikzpicture}
  +
  \qquad
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                nodes={rectangle,text width=4.8em,align=center},row sep=0.3em, column sep=0.4em]
    {
      \mathbf{C}_b^n & \mathbf{0}_3   & \mathbf{0}_3 & \mathbf{0}_3 \\
       \mathbf{0}_3   & \mathbf{C}_b^n & \mathbf{0}_3 & \mathbf{0}_3 \\
       \mathbf{0}_3   & \mathbf{0}_3   & \mathbf{0}_3 & \mathbf{0}_3 \\
       \mathbf{0}_3   & \mathbf{0}_3   & \mathbf{I}_3 & \mathbf{0}_3 \\
       \mathbf{0}_3   & \mathbf{0}_3   & \mathbf{0}_3 & \mathbf{I}_3 \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\mathbf{G}$} (m-1-4.north east);

    \draw[decorate,transform canvas={xshift=-1.4em},thick,red] (m-1-1.south west) -- node[left=2pt] {$ \times \frac{180}{\pi} $} (m-1-1.north west);
    \draw[decorate,transform canvas={xshift=-1.4em},thick,red] (m-4-1.south west) -- node[left=2pt] {$ \times \frac{10^3}{g} $} (m-4-1.north west);
    \draw[decorate,transform canvas={xshift=-1.4em},thick,red] (m-5-1.south west) -- node[left=2pt] {$ \times 10^3 $} (m-5-1.north west);

    \begin{pgfonlayer}{background}
      \fhighlight[darkgray!20]{m-1-1}{m-1-1}
      \fhighlight[brown!20]{m-2-2}{m-2-2}
      \fhighlight[pink!20]{m-4-3}{m-4-3}
      \fhighlight[lightgray!20]{m-5-4}{m-5-4}
    \end{pgfonlayer}
  \end{tikzpicture}
  \cdot
  \mathbf{w} \left[ \frac{1}{\sqrt{\text{s}}} \right]
\end{equation}

If the noise input matrix $ \mathbf{G} $ is scaled, then the noise scale matrix $ \mathbf{W} $ does not have to be scaled.

Process noise covariance matrix Q

If the alternative process noise covariance matrix $ \mathbf{Q} $ is used, it also has to be scaled.

Error covariance matrix P

The error covariance matrix is initialized as a diagonal matrix with the variance of the initial state as diagonal elements. Therefore the units are the squared units of the state vector.

\begin{equation} \label{eq:eq-LCKF_n-Units-P}
  \mathbf{P}_0 =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,nodes in empty cells,left delimiter={(},right delimiter={)},
                nodes={rectangle,text width=4.8em,align=center},row sep=0.3em, column sep=0.4em]
    {
      \sigma_{\delta R}^2 \left[ \text{rad}^2 \right] &                                                 &                                                 &                                                                    &                                                                    &                                                                    &                                                    &           \dots                                       &                                               &                                                                          &                                                                          &                                                                          &                                                                                 &                                                                                 &                 0                                                               \\
                                                      & \sigma_{\delta P}^2 \left[ \text{rad}^2 \right] &                                                 &                                                                    &                                                                    &                                                                    &                                                    &                                                       &                                               &                                                                          &                                                                          &                                                                          &                                                                                 &                                                                                 &                                                                                 \\
                                                      &                                                 & \sigma_{\delta Y}^2 \left[ \text{rad}^2 \right] &                                                                    &                                                                    &                                                                    &                                                    &                                                       &                                               &                                                                          &                                                                          &                                                                          &                                                                                 &                                                                                 &                                                                                 \\
                                                      &                                                 &                                                 & \sigma_{\delta v_N}^2 \left[ \frac{\text{m}^2}{\text{s}^2} \right] &                                                                    &                                                                    &                                                    &                                                       &                                               &                                                                          &                                                                          &                                                                          &                                                                                 &                                                                                 &                                                                                 \\
                                                      &                                                 &                                                 &                                                                    & \sigma_{\delta v_E}^2 \left[ \frac{\text{m}^2}{\text{s}^2} \right] &                                                                    &                                                    &                                                       &                                               &                                                                          &                                                                          &          \iddots                                                         &                                                                                 &                                                                                 &                                                                                 \\
                                                      &                                                 &                                                 &                                                                    &                                                                    & \sigma_{\delta v_D}^2 \left[ \frac{\text{m}^2}{\text{s}^2} \right] &                                                    &                                                       &                                               &                                                                          &                                                                          &                                                                          &                                                                                 &                                                                                 &                                                                                 \\
                                                      &                                                 &                                                 &                                                                    &                                                                    &                                                                    & \sigma_{\delta \phi}^2 \left[ \text{rad}^2 \right] &                                                       &                                               &                                                                          &                                                                          &                                                                          &                                                                                 &                                                                                 &                                                                                 \\
             \vdots                                   &                                                 &                                                 &                                                                    &                                                                    &                                                                    &                                                    & \sigma_{\delta \lambda}^2 \left[ \text{rad}^2 \right] &                                               &                                                                          &                                                                          &                                                                          &                                                                                 &                                                                                 &              \vdots                                                             \\
                                                      &                                                 &                                                 &                                                                    &                                                                    &                                                                    &                                                    &                                                       & \sigma_{\delta h}^2 \left[ \text{m}^2 \right] &                                                                          &                                                                          &                                                                          &                                                                                 &                                                                                 &                                                                                 \\
                                                      &                                                 &                                                 &                                                                    &                                                                    &                                                                    &                                                    &                                                       &                                               & \sigma_{\delta f_{x}^{b}}^2 \left[ \frac{\text{m}^2}{\text{s}^4} \right] &                                                                          &                                                                          &                                                                                 &                                                                                 &                                                                                 \\
                                                      &                                                 &                                                 &       \iddots                                                      &                                                                    &                                                                    &                                                    &                                                       &                                               &                                                                          & \sigma_{\delta f_{y}^{b}}^2 \left[ \frac{\text{m}^2}{\text{s}^4} \right] &                                                                          &                                                                                 &                                                                                 &                                                                                 \\
                                                      &                                                 &                                                 &                                                                    &                                                                    &                                                                    &                                                    &                                                       &                                               &                                                                          &                                                                          & \sigma_{\delta f_{z}^{b}}^2 \left[ \frac{\text{m}^2}{\text{s}^4} \right] &                                                                                 &                                                                                 &                                                                                 \\
                                                      &                                                 &                                                 &                                                                    &                                                                    &                                                                    &                                                    &                                                       &                                               &                                                                          &                                                                          &                                                                          & \sigma_{\delta \omega_{x}^{b}}^2 \left[ \frac{\text{rad}^2}{\text{s}^2} \right] &                                                                                 &                                                                                 \\
                                                      &                                                 &                                                 &                                                                    &                                                                    &                                                                    &                                                    &                                                       &                                               &                                                                          &                                                                          &                                                                          &                                                                                 & \sigma_{\delta \omega_{y}^{b}}^2 \left[ \frac{\text{rad}^2}{\text{s}^2} \right] &                                                                                 \\
               0                                      &                                                 &                                                 &                                                                    &                                                                    &                                                                    &                                                    &           \dots                                       &                                               &                                                                          &                                                                          &                                                                          &                                                                                 &                                                                                 & \sigma_{\delta \omega_{z}^{b}}^2 \left[ \frac{\text{rad}^2}{\text{s}^2} \right] \\
    };

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-1-1}
      \fhighlight[green!20]{m-2-2}{m-2-2}
      \fhighlight[green!20]{m-3-3}{m-3-3}
      \fhighlight[blue!20]{m-4-4}{m-4-4}
      \fhighlight[blue!20]{m-5-5}{m-5-5}
      \fhighlight[blue!20]{m-6-6}{m-6-6}
      \fhighlight[cyan!20]{m-7-7}{m-7-7}
      \fhighlight[cyan!20]{m-8-8}{m-8-8}
      \fhighlight[cyan!20]{m-9-9}{m-9-9}
      \fhighlight[red!20]{m-10-10}{m-10-10}
      \fhighlight[red!20]{m-11-11}{m-11-11}
      \fhighlight[red!20]{m-12-12}{m-12-12}
      \fhighlight[orange!20]{m-13-13}{m-13-13}
      \fhighlight[orange!20]{m-14-14}{m-14-14}
      \fhighlight[orange!20]{m-15-15}{m-15-15}
    \end{pgfonlayer}
  \end{tikzpicture}
\end{equation}

When scaling elements in $ \boldsymbol{\delta} \mathbf{x} $ the relevant parts of the $ \mathbf{P} $ matrix have to be adapted. This means the scale factors have to be multiplied with the correct rows and columns. As $ \mathbf{P} $ is a diagonal matrix, this means only the diagonal terms have to be scaled.

\begin{equation} \label{eq:eq-LCKF_n-Units-P-scaled}
  \mathbf{P}_0 =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,nodes in empty cells,left delimiter={(},right delimiter={)},
                nodes={rectangle,text width=4.8em,align=center},row sep=0.3em, column sep=0.4em]
    {
      \sigma_{\delta R}^2 \left[ \text{rad}^2 \right] &                                                 &                                                 &                                                                    &                                                                    &                                                                    &                                                    &           \dots                                       &                                               &                                                                          &                                                                          &                                                                          &                                                                                 &                                                                                 &                 0                                                               \\
                                                      & \sigma_{\delta P}^2 \left[ \text{rad}^2 \right] &                                                 &                                                                    &                                                                    &                                                                    &                                                    &                                                       &                                               &                                                                          &                                                                          &                                                                          &                                                                                 &                                                                                 &                                                                                 \\
                                                      &                                                 & \sigma_{\delta Y}^2 \left[ \text{rad}^2 \right] &                                                                    &                                                                    &                                                                    &                                                    &                                                       &                                               &                                                                          &                                                                          &                                                                          &                                                                                 &                                                                                 &                                                                                 \\
                                                      &                                                 &                                                 & \sigma_{\delta v_N}^2 \left[ \frac{\text{m}^2}{\text{s}^2} \right] &                                                                    &                                                                    &                                                    &                                                       &                                               &                                                                          &                                                                          &                                                                          &                                                                                 &                                                                                 &                                                                                 \\
                                                      &                                                 &                                                 &                                                                    & \sigma_{\delta v_E}^2 \left[ \frac{\text{m}^2}{\text{s}^2} \right] &                                                                    &                                                    &                                                       &                                               &                                                                          &                                                                          &          \iddots                                                         &                                                                                 &                                                                                 &                                                                                 \\
                                                      &                                                 &                                                 &                                                                    &                                                                    & \sigma_{\delta v_D}^2 \left[ \frac{\text{m}^2}{\text{s}^2} \right] &                                                    &                                                       &                                               &                                                                          &                                                                          &                                                                          &                                                                                 &                                                                                 &                                                                                 \\
                                                      &                                                 &                                                 &                                                                    &                                                                    &                                                                    & \sigma_{\delta \phi}^2 \left[ \text{rad}^2 \right] &                                                       &                                               &                                                                          &                                                                          &                                                                          &                                                                                 &                                                                                 &                                                                                 \\
             \vdots                                   &                                                 &                                                 &                                                                    &                                                                    &                                                                    &                                                    & \sigma_{\delta \lambda}^2 \left[ \text{rad}^2 \right] &                                               &                                                                          &                                                                          &                                                                          &                                                                                 &                                                                                 &              \vdots                                                             \\
                                                      &                                                 &                                                 &                                                                    &                                                                    &                                                                    &                                                    &                                                       & \sigma_{\delta h}^2 \left[ \text{m}^2 \right] &                                                                          &                                                                          &                                                                          &                                                                                 &                                                                                 &                                                                                 \\
                                                      &                                                 &                                                 &                                                                    &                                                                    &                                                                    &                                                    &                                                       &                                               & \sigma_{\delta f_{x}^{b}}^2 \left[ \frac{\text{m}^2}{\text{s}^4} \right] &                                                                          &                                                                          &                                                                                 &                                                                                 &                                                                                 \\
                                                      &                                                 &                                                 &       \iddots                                                      &                                                                    &                                                                    &                                                    &                                                       &                                               &                                                                          & \sigma_{\delta f_{y}^{b}}^2 \left[ \frac{\text{m}^2}{\text{s}^4} \right] &                                                                          &                                                                                 &                                                                                 &                                                                                 \\
                                                      &                                                 &                                                 &                                                                    &                                                                    &                                                                    &                                                    &                                                       &                                               &                                                                          &                                                                          & \sigma_{\delta f_{z}^{b}}^2 \left[ \frac{\text{m}^2}{\text{s}^4} \right] &                                                                                 &                                                                                 &                                                                                 \\
                                                      &                                                 &                                                 &                                                                    &                                                                    &                                                                    &                                                    &                                                       &                                               &                                                                          &                                                                          &                                                                          & \sigma_{\delta \omega_{x}^{b}}^2 \left[ \frac{\text{rad}^2}{\text{s}^2} \right] &                                                                                 &                                                                                 \\
                                                      &                                                 &                                                 &                                                                    &                                                                    &                                                                    &                                                    &                                                       &                                               &                                                                          &                                                                          &                                                                          &                                                                                 & \sigma_{\delta \omega_{y}^{b}}^2 \left[ \frac{\text{rad}^2}{\text{s}^2} \right] &                                                                                 \\
               0                                      &                                                 &                                                 &                                                                    &                                                                    &                                                                    &                                                    &           \dots                                       &                                               &                                                                          &                                                                          &                                                                          &                                                                                 &                                                                                 & \sigma_{\delta \omega_{z}^{b}}^2 \left[ \frac{\text{rad}^2}{\text{s}^2} \right] \\
    };

    \foreach \r in {1,3,4,6,7,8,9,10,12,13,15} {
      \foreach \c in {1,3,4,6,7,8,9,10,12,13,15} {
        \coordinate (m-\r-\c-nw) at (100,-100);
        \coordinate (m-\r-\c-ne) at (-100,-100);
        \coordinate (m-\r-\c-se) at (-100,100);
        \coordinate (m-\r-\c-sw) at (100,100);

        \foreach \row in {\c} {
          \path let \p1=(m-\row-\c.west), \p2=(m-\r-\c-nw) in coordinate (m-\r-\c-nw) at ({min(\x1,\x2)},\y2);
          \path let \p1=(m-\row-\c.east), \p2=(m-\r-\c-ne) in coordinate (m-\r-\c-ne) at ({max(\x1,\x2)},\y2);
          \path let \p1=(m-\row-\c.east), \p2=(m-\r-\c-se) in coordinate (m-\r-\c-se) at ({max(\x1,\x2)},\y2);
          \path let \p1=(m-\row-\c.west), \p2=(m-\r-\c-sw) in coordinate (m-\r-\c-sw) at ({min(\x1,\x2)},\y2);
        }
        \foreach \col in {\r} {
          \path let \p1=(m-\r-\col.north), \p2=(m-\r-\c-nw) in coordinate (m-\r-\c-nw) at (\x2,{max(\y1,\y2)});
          \path let \p1=(m-\r-\col.north), \p2=(m-\r-\c-ne) in coordinate (m-\r-\c-ne) at (\x2,{max(\y1,\y2)});
          \path let \p1=(m-\r-\col.south), \p2=(m-\r-\c-se) in coordinate (m-\r-\c-se) at (\x2,{min(\y1,\y2)});
          \path let \p1=(m-\r-\col.south), \p2=(m-\r-\c-sw) in coordinate (m-\r-\c-sw) at (\x2,{min(\y1,\y2)});
        }
      }
    }

    \draw[decorate,transform canvas={xshift=-1.4em},thick,red] (m-3-1-sw) -- node[left=2pt] {$ \times \frac{180}{\pi} $} (m-1-1-nw);
    \draw[decorate,transform canvas={yshift= 0.5em},thick,red] (m-1-1-nw) -- node[above=2pt] {$ \times \frac{180}{\pi} $} (m-1-3-ne);

    \draw[decorate,transform canvas={xshift=-1.4em},thick,red] (m-8-1-sw) -- node[left=2pt] {$ \times R_0 $} (m-7-1-nw);
    \draw[decorate,transform canvas={yshift= 0.5em},thick,red] (m-1-7-nw) -- node[above=2pt] {$ \times R_0 $} (m-1-8-ne);

    \draw[decorate,transform canvas={xshift=-1.4em},thick,red] (m-12-1-sw) -- node[left=2pt] {$ \times \frac{10^3}{g} $} (m-10-1-nw);
    \draw[decorate,transform canvas={yshift= 0.5em},thick,red] (m-1-10-nw) -- node[above=2pt] {$ \times \frac{10^3}{g} $} (m-1-12-ne);

    \draw[decorate,transform canvas={xshift=-1.4em},thick,red] (m-15-1-sw) -- node[left=2pt] {$ \times 10^3 $} (m-13-1-nw);
    \draw[decorate,transform canvas={yshift= 0.5em},thick,red] (m-1-13-nw) -- node[above=2pt] {$ \times 10^3 $} (m-1-15-ne);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-1-1}
      \fhighlight[green!20]{m-2-2}{m-2-2}
      \fhighlight[green!20]{m-3-3}{m-3-3}
      \fhighlight[blue!20]{m-4-4}{m-4-4}
      \fhighlight[blue!20]{m-5-5}{m-5-5}
      \fhighlight[blue!20]{m-6-6}{m-6-6}
      \fhighlight[cyan!20]{m-7-7}{m-7-7}
      \fhighlight[cyan!20]{m-8-8}{m-8-8}
      \fhighlight[cyan!20]{m-9-9}{m-9-9}
      \fhighlight[red!20]{m-10-10}{m-10-10}
      \fhighlight[red!20]{m-11-11}{m-11-11}
      \fhighlight[red!20]{m-12-12}{m-12-12}
      \fhighlight[orange!20]{m-13-13}{m-13-13}
      \fhighlight[orange!20]{m-14-14}{m-14-14}
      \fhighlight[orange!20]{m-15-15}{m-15-15}

      \bhighlight[red!60]{m-1-1}{m-3-3}
      \bhighlight[red!60]{m-7-7}{m-8-8}
      \bhighlight[red!60]{m-10-10}{m-12-12}
      \bhighlight[red!60]{m-13-13}{m-15-15}
    \end{pgfonlayer}
  \end{tikzpicture}
\end{equation}

Measurement innovation 𝛿z

\begin{equation} \label{eq:eq-LCKF_n-Units-deltaz}
  \boldsymbol{\delta} \mathbf{z} =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.1em,
                nodes={rectangle,text width=1.8em,align=center,minimum height=2.3em,anchor=center},] {
      \delta \phi           & \left[ \text{rad} \right]                  \\
      \delta \lambda        & \left[ \text{rad} \right]                  \\
      \delta h              & \left[ \text{m} \right]                    \\
      \delta v_{N}          & \left[ \frac{\text{m}}{\text{s}} \right]   \\
      \delta v_{E}          & \left[ \frac{\text{m}}{\text{s}} \right]   \\
      \delta v_{D}          & \left[ \frac{\text{m}}{\text{s}} \right]   \\
    };

    \begin{pgfonlayer}{background}
      \fhighlight[cyan!20]{m-1-1}{m-3-1}
      \fhighlight[blue!20]{m-4-1}{m-6-1}
    \end{pgfonlayer}
  \end{tikzpicture}
  =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=2.5em,
                nodes={rectangle,text width=1.8em,align=center,minimum height=2.0em,anchor=center},] {
       \tilde{\phi}_G    - \hat{\phi}    & \left[ \text{rad} \right]                \\
       \tilde{\lambda}_G - \hat{\lambda} & \left[ \text{rad} \right]                \\
       \tilde{h}_G       - \hat{h}       & \left[ \text{m} \right]                  \\
       \tilde{v}_{N,G}   - \hat{v}_{N}   & \left[ \frac{\text{m}}{\text{s}} \right] \\
       \tilde{v}_{E,G}   - \hat{v}_{E}   & \left[ \frac{\text{m}}{\text{s}} \right] \\
       \tilde{v}_{D,G}   - \hat{v}_{D}   & \left[ \frac{\text{m}}{\text{s}} \right] \\
    };
  \end{tikzpicture}
  +
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.0em,
                nodes={rectangle,text width=26em,align=center,minimum height=6.0em,anchor=center},] {
        - \begin{pmatrix} \frac{1}{R_N + h} \left[ \frac{1}{\text{m}} \right] &               0                                                 &  0                  \\[1.2em]
                                   0                                          & \frac{1}{(R_E + h)\cos{\phi}} \left[ \frac{1}{\text{m}} \right] &  0                  \\[1.2em]
                                   0                                          &               0                                                 & -1 \left[ - \right] \end{pmatrix}
          \mathbf{C}_b^n \left[ - \right] \mathbf{l}_{ba}^b \left[ \text{m} \right] \\
        - \mathbf{C}_b^n \left[ - \right] (\boldsymbol{\omega}_{ib}^b  \left[ \frac{\text{rad}}{\text{s}} \right] \times \mathbf{l}_{ba}^b  \left[ \text{m} \right]) + \boldsymbol{\Omega}_{ie}^n \left[ \frac{\text{rad}}{\text{s}} \right] \mathbf{C}_b^n  \left[ - \right] \mathbf{l}_{ba}^b  \left[ \text{m} \right] \\
    };
  \end{tikzpicture}
\end{equation}

When scaling elements in $ \boldsymbol{\delta} \mathbf{x} $ the relevant parts of the measurement innovation $ \boldsymbol{\delta} \mathbf{z} $ have to be adapted

\begin{equation} \label{eq:eq-LCKF_n-Units-deltaz-scaled}
  \boldsymbol{\delta} \mathbf{z} =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.1em,
                nodes={rectangle,text width=1.8em,align=center,minimum height=2.3em,anchor=center},] {
      \delta \phi           & \left[ \highlight[red!60]{\text{m'}} \right] \\
      \delta \lambda        & \left[ \highlight[red!60]{\text{m'}} \right] \\
      \delta h              & \left[ \text{m} \right]                      \\
      \delta v_{N}          & \left[ \frac{\text{m}}{\text{s}} \right]     \\
      \delta v_{E}          & \left[ \frac{\text{m}}{\text{s}} \right]     \\
      \delta v_{D}          & \left[ \frac{\text{m}}{\text{s}} \right]     \\
    };

    \begin{pgfonlayer}{background}
      \fhighlight[cyan!20]{m-1-1}{m-3-1}
      \fhighlight[blue!20]{m-4-1}{m-6-1}
    \end{pgfonlayer}
  \end{tikzpicture}
  =
  \quad
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=2.5em,
                nodes={rectangle,text width=1.8em,align=center,minimum height=2.0em,anchor=center},] {
       \tilde{\phi}_G    - \hat{\phi}    & \left[ \text{rad} \right]                \\
       \tilde{\lambda}_G - \hat{\lambda} & \left[ \text{rad} \right]                \\
       \tilde{h}_G       - \hat{h}       & \left[ \text{m} \right]                  \\
       \tilde{v}_{N,G}   - \hat{v}_{N}   & \left[ \frac{\text{m}}{\text{s}} \right] \\
       \tilde{v}_{E,G}   - \hat{v}_{E}   & \left[ \frac{\text{m}}{\text{s}} \right] \\
       \tilde{v}_{D,G}   - \hat{v}_{D}   & \left[ \frac{\text{m}}{\text{s}} \right] \\
    };
    \draw[decorate,transform canvas={xshift=-1.4em},thick,red] (m-2-1.south west) -- node[left=2pt] {$ \times R_0 $} (m-1-1.north west);
  \end{tikzpicture}
  +
  \quad
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.0em,
                nodes={rectangle,text width=26em,align=center,minimum height=6.0em,anchor=center},] {
        - \begin{pmatrix} \frac{1}{R_N + h} \left[ \frac{1}{\text{m}} \right] &               0                                                 &  0                  \\[1.2em]
                                   0                                          & \frac{1}{(R_E + h)\cos{\phi}} \left[ \frac{1}{\text{m}} \right] &  0                  \\[1.2em]
                                   0                                          &               0                                                 & -1 \left[ - \right] \end{pmatrix}
          \mathbf{C}_b^n \left[ - \right] \mathbf{l}_{ba}^b \left[ \text{m} \right] \\
        - \mathbf{C}_b^n \left[ - \right] (\boldsymbol{\omega}_{ib}^b  \left[ \frac{\text{rad}}{\text{s}} \right] \times \mathbf{l}_{ba}^b  \left[ \text{m} \right]) + \boldsymbol{\Omega}_{ie}^n \left[ \frac{\text{rad}}{\text{s}} \right] \mathbf{C}_b^n  \left[ - \right] \mathbf{l}_{ba}^b  \left[ \text{m} \right] \\
    };
    \draw[decorate,transform canvas={xshift=-1.4em},thick,red] ($(m-1-1.south west) + (0,2.5em) $) -- node[left=2pt] {$ \times R_0 $} (m-1-1.north west);
  \end{tikzpicture}
\end{equation}

Measurement sensitivity Matrix H

\begin{equation} \label{eq:eq-LCKF_n-Units-H}
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.1em,
                nodes={rectangle,text width=1.8em,align=center,minimum height=2.3em,anchor=center},] {
      \delta \phi           & \left[ \text{rad} \right]                  \\
      \delta \lambda        & \left[ \text{rad} \right]                  \\
      \delta h              & \left[ \text{m} \right]                    \\
      \delta v_{N}          & \left[ \frac{\text{m}}{\text{s}} \right]   \\
      \delta v_{E}          & \left[ \frac{\text{m}}{\text{s}} \right]   \\
      \delta v_{D}          & \left[ \frac{\text{m}}{\text{s}} \right]   \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\boldsymbol{\delta} \mathbf{z}$} (m-1-2.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[blue!20]{m-4-1}{m-6-1}
      \fhighlight[cyan!20]{m-1-1}{m-3-1}
    \end{pgfonlayer}
  \end{tikzpicture}
  =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,nodes in empty cells,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.4em,
                nodes={rectangle,text width=2.8em,align=center,minimum height=2.3em,anchor=center},] {
      &                                                                       & &                     &                     &                     & -1 \left[ - \right] &  0                  &  0                  & &              & & &                                                               &  \\
      & \mathbf{H}_{r,\delta \psi}^n \left[ \text{rad} \right]                & &                     &     \mathbf{0}_3    &                     &  0                  & -1 \left[ - \right] &  0                  & & \mathbf{0}_3 & & &          \mathbf{0}_3                                         &  \\
      &                                                                       & &                     &                     &                     &  0                  &  0                  & -1 \left[ - \right] & &              & & &                                                               &  \\
      &                                                                       & & -1 \left[ - \right] &  0                  &  0                  &                     &                     &                     & &              & & &                                                               &  \\
      & \mathbf{H}_{v,\delta \psi}^n \left[ \frac{\text{m}}{\text{s}} \right] & &  0                  & -1 \left[ - \right] &  0                  &                     &     \mathbf{0}_3    &                     & & \mathbf{0}_3 & & & \mathbf{H}_{\delta v,\omega_{ib}^b}^n \left[ \text{m} \right] &  \\
      &                                                                       & &  0                  &  0                  & -1 \left[ - \right] &                     &                     &                     & &              & & &                                                               &  \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\mathbf{H}$} (m-1-15.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-3-3}
      \fhighlight[green!20]{m-4-1}{m-6-3}
      \fhighlight[blue!20]{m-4-4}{m-6-6}
      \fhighlight[cyan!20]{m-1-7}{m-3-9}
      \fhighlight[orange!20]{m-4-13}{m-6-15}
    \end{pgfonlayer}
  \end{tikzpicture}
  \cdot
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.1em,
                nodes={rectangle,text width=1.6em,align=center,minimum height=2.3em,anchor=center},] {
      \delta R              & \left[ \text{rad} \right]                  \\
      \delta P              & \left[ \text{rad} \right]                  \\
      \delta Y              & \left[ \text{rad} \right]                  \\
      \delta v_{N}          & \left[ \frac{\text{m}}{\text{s}} \right]   \\
      \delta v_{E}          & \left[ \frac{\text{m}}{\text{s}} \right]   \\
      \delta v_{D}          & \left[ \frac{\text{m}}{\text{s}} \right]   \\
      \delta \phi           & \left[ \text{rad} \right]                  \\
      \delta \lambda        & \left[ \text{rad} \right]                  \\
      \delta h              & \left[ \text{m} \right]                    \\
      \delta f_{x}^{b}      & \left[ \frac{\text{m}}{\text{s}^2} \right] \\
      \delta f_{y}^{b}      & \left[ \frac{\text{m}}{\text{s}^2} \right] \\
      \delta f_{z}^{b}      & \left[ \frac{\text{m}}{\text{s}^2} \right] \\
      \delta \omega_{x}^{b} & \left[ \frac{\text{rad}}{\text{s}} \right] \\
      \delta \omega_{y}^{b} & \left[ \frac{\text{rad}}{\text{s}} \right] \\
      \delta \omega_{z}^{b} & \left[ \frac{\text{rad}}{\text{s}} \right] \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\boldsymbol{\delta} \mathbf{x}$} (m-1-2.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-3-1}
      \fhighlight[blue!20]{m-4-1}{m-6-1}
      \fhighlight[cyan!20]{m-7-1}{m-9-1}
      \fhighlight[red!20]{m-10-1}{m-12-1}
      \fhighlight[orange!20]{m-13-1}{m-15-1}
    \end{pgfonlayer}
  \end{tikzpicture}
\end{equation}

When scaling elements in $ \boldsymbol{\delta} \mathbf{x} $ the relevant parts of the measurement innovation $ \boldsymbol{\delta} \mathbf{z} $ have to be adapted. The $ \mathbf{H} $ matrix stays unscaled.

\begin{equation} \label{eq:eq-LCKF_n-Units-H-scaled}
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.1em,
                nodes={rectangle,text width=1.8em,align=center,minimum height=2.3em,anchor=center},] {
      \delta \phi           & \left[ \highlight[red!60]{\text{m'}} \right] \\
      \delta \lambda        & \left[ \highlight[red!60]{\text{m'}} \right] \\
      \delta h              & \left[ \text{m} \right]                      \\
      \delta v_{N}          & \left[ \frac{\text{m}}{\text{s}} \right]     \\
      \delta v_{E}          & \left[ \frac{\text{m}}{\text{s}} \right]     \\
      \delta v_{D}          & \left[ \frac{\text{m}}{\text{s}} \right]     \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\boldsymbol{\delta} \mathbf{z}$} (m-1-2.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[blue!20]{m-4-1}{m-6-1}
      \fhighlight[cyan!20]{m-1-1}{m-3-1}
    \end{pgfonlayer}
  \end{tikzpicture}
  =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,nodes in empty cells,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.4em,
                nodes={rectangle,text width=2.8em,align=center,minimum height=2.3em,anchor=center},] {
      &                                                                       & &                     &                     &                     & -1 \left[ - \right] &  0                  &  0                  & &              & & &                                                               &  \\
      & \mathbf{H}_{r,\delta \psi}^n \left[ \text{rad} \right]                & &                     &     \mathbf{0}_3    &                     &  0                  & -1 \left[ - \right] &  0                  & & \mathbf{0}_3 & & &          \mathbf{0}_3                                         &  \\
      &                                                                       & &                     &                     &                     &  0                  &  0                  & -1 \left[ - \right] & &              & & &                                                               &  \\
      &                                                                       & & -1 \left[ - \right] &  0                  &  0                  &                     &                     &                     & &              & & &                                                               &  \\
      & \mathbf{H}_{v,\delta \psi}^n \left[ \frac{\text{m}}{\text{s}} \right] & &  0                  & -1 \left[ - \right] &  0                  &                     &     \mathbf{0}_3    &                     & & \mathbf{0}_3 & & & \mathbf{H}_{\delta v,\omega_{ib}^b}^n \left[ \text{m} \right] &  \\
      &                                                                       & &  0                  &  0                  & -1 \left[ - \right] &                     &                     &                     & &              & & &                                                               &  \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\mathbf{H}$} (m-1-15.north east);

    \draw[decorate,transform canvas={xshift=-1.4em},thick,red] (m-2-1.south west) -- node[left=2pt] {$ \times R_0 $} (m-1-1.north west);

    \draw[decorate,transform canvas={yshift=1.1em},thick,red] (m-1-1.north west) -- node[above=2pt] {$ \times \frac{\pi}{180} $} (m-1-3.north east);
    \draw[decorate,transform canvas={yshift=2.0em},thick,red] (m-1-7.north west) -- node[above=2pt] {$ \times \frac{1}{R_0} $} (m-1-8.north east);
    \draw[decorate,transform canvas={yshift=1.1em},thick,red] (m-1-10.north west) -- node[above=2pt] {$ \times \frac{g}{10^3} $} (m-1-12.north east);
    \draw[decorate,transform canvas={yshift=1.1em},thick,red] (m-1-13.north west) -- node[above=2pt] {$ \times 10^{-3} $} (m-1-15.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-3-3}
      \fhighlight[green!20]{m-4-1}{m-6-3}
      \fhighlight[blue!20]{m-4-4}{m-6-6}
      \fhighlight[cyan!20]{m-1-7}{m-3-9}
      \fhighlight[orange!20]{m-4-13}{m-6-15}
    \end{pgfonlayer}
  \end{tikzpicture}
  \cdot
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.1em,
                nodes={rectangle,text width=2.4em,align=center,minimum height=2.3em,anchor=center},] {
      \delta R              & \left[ \highlight[red!60]{\text{deg}} \right]                   \\
      \delta P              & \left[ \highlight[red!60]{\text{deg}} \right]                   \\
      \delta Y              & \left[ \highlight[red!60]{\text{deg}} \right]                   \\
      \delta v_{N}          & \left[ \frac{\text{m}}{\text{s}} \right]                        \\
      \delta v_{E}          & \left[ \frac{\text{m}}{\text{s}} \right]                        \\
      \delta v_{D}          & \left[ \frac{\text{m}}{\text{s}} \right]                        \\
      \delta \phi           & \left[ \highlight[red!60]{\text{m'}} \right]                    \\
      \delta \lambda        & \left[ \highlight[red!60]{\text{m'}} \right]                    \\
      \delta h              & \left[ \text{m} \right]                                         \\
      \delta f_{x}^{b}      & \left[ \highlight[red!60]{\text{mg}} \right]                    \\
      \delta f_{y}^{b}      & \left[ \highlight[red!60]{\text{mg}} \right]                    \\
      \delta f_{z}^{b}      & \left[ \highlight[red!60]{\text{mg}} \right]                    \\
      \delta \omega_{x}^{b} & \left[ \highlight[red!60]{\frac{\text{mrad}}{\text{s}}} \right] \\
      \delta \omega_{y}^{b} & \left[ \highlight[red!60]{\frac{\text{mrad}}{\text{s}}} \right] \\
      \delta \omega_{z}^{b} & \left[ \highlight[red!60]{\frac{\text{mrad}}{\text{s}}} \right] \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\boldsymbol{\delta} \mathbf{x}$} (m-1-2.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-3-1}
      \fhighlight[blue!20]{m-4-1}{m-6-1}
      \fhighlight[cyan!20]{m-7-1}{m-9-1}
      \fhighlight[red!20]{m-10-1}{m-12-1}
      \fhighlight[orange!20]{m-13-1}{m-15-1}
    \end{pgfonlayer}
  \end{tikzpicture}
\end{equation}

Measurement noise covariance matrix R

\begin{equation} \label{eq:eq-LCKF_n-Units-R}
  \mathbf{R} = E \left( (\mathbf{z} - \mathbf{H} \mathbf{x})(\mathbf{z} - \mathbf{H} \mathbf{x})^T \right) =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.1em,
                nodes={rectangle,text width=4.2em,align=center,minimum height=2.3em,anchor=center},] {
      \sigma^2_{z_\phi} \left[ \text{rad}^2 \right] &          0                                       &       0                                  &         0                                                       &         0                                                       &         0                                                       \\
              0                                     & \sigma^2_{z_\lambda} \left[ \text{rad}^2 \right] &       0                                  &         0                                                       &         0                                                       &         0                                                       \\
              0                                     &          0                                       & \sigma^2_{z_h} \left[ \text{m}^2 \right] &         0                                                       &         0                                                       &         0                                                       \\
              0                                     &          0                                       &       0                                  & \sigma^2_{z_{v_N}} \left[ \frac{\text{m}^2}{\text{s}^2} \right] &         0                                                       &         0                                                       \\
              0                                     &          0                                       &       0                                  &         0                                                       & \sigma^2_{z_{v_E}} \left[ \frac{\text{m}^2}{\text{s}^2} \right] &         0                                                       \\
              0                                     &          0                                       &       0                                  &         0                                                       &         0                                                       & \sigma^2_{z_{v_D}} \left[ \frac{\text{m}^2}{\text{s}^2} \right] \\
    };

    \begin{pgfonlayer}{background}
      \fhighlight[cyan!20]{m-1-1}{m-1-1}
      \fhighlight[cyan!20]{m-2-2}{m-2-2}
      \fhighlight[cyan!20]{m-3-3}{m-3-3}
      \fhighlight[blue!20]{m-4-4}{m-4-4}
      \fhighlight[blue!20]{m-5-5}{m-5-5}
      \fhighlight[blue!20]{m-6-6}{m-6-6}
    \end{pgfonlayer}
  \end{tikzpicture}
\end{equation}

When scaling elements in $ \boldsymbol{\delta} \mathbf{x} $ the measurement innovation $ \boldsymbol{\delta} \mathbf{z} $ is scaled and therefore the relevant parts of the $ \mathbf{R} $ matrix have to be adapted.

\begin{equation} \label{eq:eq-LCKF_n-Units-R-scaled}
  \mathbf{R} = E \left( (\mathbf{z} - \mathbf{H} \mathbf{x})(\mathbf{z} - \mathbf{H} \mathbf{x})^T \right) =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.1em,
                nodes={rectangle,text width=4.2em,align=center,minimum height=2.3em,anchor=center},] {
      \sigma^2_{z_\phi} \left[ \text{rad}^2 \right] &          0                                       &       0                                  &         0                                                       &         0                                                       &         0                                                       \\
              0                                     & \sigma^2_{z_\lambda} \left[ \text{rad}^2 \right] &       0                                  &         0                                                       &         0                                                       &         0                                                       \\
              0                                     &          0                                       & \sigma^2_{z_h} \left[ \text{m}^2 \right] &         0                                                       &         0                                                       &         0                                                       \\
              0                                     &          0                                       &       0                                  & \sigma^2_{z_{v_N}} \left[ \frac{\text{m}^2}{\text{s}^2} \right] &         0                                                       &         0                                                       \\
              0                                     &          0                                       &       0                                  &         0                                                       & \sigma^2_{z_{v_E}} \left[ \frac{\text{m}^2}{\text{s}^2} \right] &         0                                                       \\
              0                                     &          0                                       &       0                                  &         0                                                       &         0                                                       & \sigma^2_{z_{v_D}} \left[ \frac{\text{m}^2}{\text{s}^2} \right] \\
    };

    \foreach \r in {1,...,6} {
      \foreach \c in {1,...,6} {
        \coordinate (m-\r-\c-nw) at (100,-100);
        \coordinate (m-\r-\c-ne) at (-100,-100);
        \coordinate (m-\r-\c-se) at (-100,100);
        \coordinate (m-\r-\c-sw) at (100,100);

        \foreach \row in {\c} {
          \path let \p1=(m-\row-\c.west), \p2=(m-\r-\c-nw) in coordinate (m-\r-\c-nw) at ({min(\x1,\x2)},\y2);
          \path let \p1=(m-\row-\c.east), \p2=(m-\r-\c-ne) in coordinate (m-\r-\c-ne) at ({max(\x1,\x2)},\y2);
          \path let \p1=(m-\row-\c.east), \p2=(m-\r-\c-se) in coordinate (m-\r-\c-se) at ({max(\x1,\x2)},\y2);
          \path let \p1=(m-\row-\c.west), \p2=(m-\r-\c-sw) in coordinate (m-\r-\c-sw) at ({min(\x1,\x2)},\y2);
        }
        \foreach \col in {\r} {
          \path let \p1=(m-\r-\col.north), \p2=(m-\r-\c-nw) in coordinate (m-\r-\c-nw) at (\x2,{max(\y1,\y2)});
          \path let \p1=(m-\r-\col.north), \p2=(m-\r-\c-ne) in coordinate (m-\r-\c-ne) at (\x2,{max(\y1,\y2)});
          \path let \p1=(m-\r-\col.south), \p2=(m-\r-\c-se) in coordinate (m-\r-\c-se) at (\x2,{min(\y1,\y2)});
          \path let \p1=(m-\r-\col.south), \p2=(m-\r-\c-sw) in coordinate (m-\r-\c-sw) at (\x2,{min(\y1,\y2)});
        }
      }
    }

    \draw[decorate,transform canvas={xshift=-1.4em},thick,red] (m-2-1-sw) -- node[left=2pt] {$ \times R_0^2 $} (m-1-1-nw);

    \begin{pgfonlayer}{background}
      \fhighlight[cyan!20]{m-1-1}{m-1-1}
      \fhighlight[cyan!20]{m-2-2}{m-2-2}
      \fhighlight[cyan!20]{m-3-3}{m-3-3}
      \fhighlight[blue!20]{m-4-4}{m-4-4}
      \fhighlight[blue!20]{m-5-5}{m-5-5}
      \fhighlight[blue!20]{m-6-6}{m-6-6}

      \bhighlight[red!60]{m-1-1}{m-2-2}
    \end{pgfonlayer}
  \end{tikzpicture}
\end{equation}

Appendix

Derivation

Position Equations

The time derivative of curvilinear position as a function of the Earth-referenced velocity in local navigation frame axes (see [17] Groves, ch. 2.4.2, eq. 2.111, p. 61 or [47] Titterton, ch. 3.7, eq. 3.81,3.85,3.86, p. 48ff):

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Position-timeDerivative}
\begin{aligned}
  \dotup{\phi}    &= \frac{v_N}{R_N + h}             \\
  \dotup{\lambda} &= \frac{v_E}{(R_E + h)\cos{\phi}} \\
  \dotup{h}       &= -v_D                            \\
\end{aligned}
\end{equation}

Differential of left and right side neglecting errors in $R_N $ and $R_E $ ( $ \nicefrac{\partial R_N}{\partial p_i} = 0 $ and $ \quad \nicefrac{\partial R_E}{\partial p_i} = 0$)

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Position-differential}
\begin{aligned}
  \delta\dotup{\phi}    &= \frac{\partial \dotup{\phi}}{\partial v_N} \delta v_N + \frac{\partial \dotup{\phi}}{\partial h} \delta h = \highlight[teal!20]{\dfrac{1}{R_N + h}} \delta v_N \highlight[cyan!20]{- \dfrac{v_N}{(R_N + h)^2}} \delta h \\
  \delta\dotup{\lambda} &= \frac{\partial \dotup{\lambda}}{\partial v_E} \delta v_E + \frac{\partial \dotup{\lambda}}{\partial h} \delta h + \frac{\partial \dotup{\lambda}}{\partial \phi} \delta \phi = \highlight[teal!20]{\dfrac{1}{(R_E + h)\cos{\phi}}} \delta v_E \highlight[cyan!20]{- \dfrac{v_E}{(R_E + h)^2\cos{\phi}}} \delta h + \highlight[cyan!20]{\dfrac{v_E \tan{\phi}}{(R_E + h)\cos{\phi}}} \delta \phi \\
  \delta\dotup{h}       &= \frac{\partial \dotup{h}}{\partial v_D} \delta v_D = \highlight[teal!20]{-1} \cdot \delta v_D \\
\end{aligned}
\end{equation}

Attitude Equations

The equations here mainly follow [47] Titterton, ch. 12.3.1.1, p. 342f

The estimated attitude $ \mathbf{\hat{C}}_b^n $ can be written in terms of true direction cosine matrix $ \mathbf{C}_b^n $

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Attitude-estimate-true}
  \mathbf{\hat{C}}_b^n = \mathbf{B} \mathbf{C}_b^n
\end{equation}

where $ \mathbf{B} $ is the transformation from true reference axes to estimated reference axes and it can be approximated for small angle misalignments as

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Attitude-transformation}
  \mathbf{B} = [\mathbf{I} - \mathbf{\Psi}], \quad \text{with}~ \mathbf{\Psi} = \begin{pmatrix} \delta\alpha \\ \delta\beta \\ \delta\gamma \end{pmatrix} \times
\end{equation}

with $ \mathbf{\Psi} $ being a skew symmetric matrix and $ \delta\alpha, \delta\beta, \delta\gamma $ being the attitude errors (e.g. roll, pitch, yaw for small euler angles).

Substituting \eqref{eq:eq-LCKF_n-Derivation-Attitude-transformation} into \eqref{eq:eq-LCKF_n-Derivation-Attitude-estimate-true} gives

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Attitude-estimate-errors}
  \mathbf{\hat{C}}_b^n \approx [\mathbf{I} - \mathbf{\Psi}] \mathbf{C}_b^n
\end{equation}

and solving for $ \mathbf{\Psi} $

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Attitude-skew-mat}
  \mathbf{\Psi} = \mathbf{I} - \mathbf{\hat{C}}_b^n {\mathbf{C}_b^n}^T
\end{equation}

Differentiating this equation yields:

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Attitude-skew-mat-dot}
  \mathbf{\dotup{\Psi}} = -\mathbf{\dotup{\hat{C}}}_b^{\raise-1.25ex\hbox{$\scriptstyle n$}} {\mathbf{C}_b^n}^T - \mathbf{\hat{C}}_b^n {\mathbf{\dotup{C}}_b^n}\raise1.25ex\hbox{$\scriptstyle T$}
\end{equation}

Using the following equations

  • Time derivative DCM local-navigation-frame $ \mathbf{\dotup{C}}_b^n = \mathbf{C}_b^n \mathbf{\Omega}_{nb}^b $[17] Groves, ch. 5.4.1, eq. 5.39, p. 176 or [47] Titterton, ch. 3.5.3, eq. 3.28, p. 32
    • Time derivative DCM $ \mathbf{\dotup{C}}_\beta^\alpha(t) = \lim_{\delta t \to 0}\left(\dfrac{\mathbf{C}_\beta^\alpha(t+\delta t) - \mathbf{C}_\beta^\alpha(t)}{\delta t}\right) $[17] Groves, ch. 2.3.1, eq. 2.52, p. 45
    • DCM with small angle approximation $ C_\alpha^\beta \approx \begin{pmatrix} 1 & -\psi_{\beta\alpha} & \theta_{\beta\alpha} \\ \psi_{\beta\alpha} & 1 & -\phi_{\beta\alpha} \\ -\theta_{\beta\alpha} & \phi_{\beta\alpha} & 1 \end{pmatrix} = \mathbf{I}_3 + [\boldsymbol{\psi}_{\beta\alpha} \times ] = \mathbf{I}_3 + \mathbf{\Omega}_{\beta\alpha} $[17] Groves, ch. 2.2.2, eq. 2.26, p. 39
  • Angular rate splitting $ \boldsymbol{\omega}_{\beta\alpha}^\gamma = \boldsymbol{\omega}_{\beta\delta}^\gamma + \boldsymbol{\omega}_{\delta\alpha}^\gamma $[17] Groves, ch. 2.3.1, eq. 2.48, p. 45
  • Skew-symmetric matrix transformation $ \mathbf{\Omega}_{\beta\alpha}^\delta = \mathbf{C}_\gamma^\delta \mathbf{\Omega}_{\beta\alpha}^\gamma \mathbf{C}_\delta^\gamma $[17] Groves, ch. 2.3.1, eq. 2.51, p. 45

leads to the time derivative of the coordinate transformation matrix (see [17] Groves, ch. 5.4.1, eq. 5.40, p. 177 or [47] Titterton, ch. 12.3.1.1, eq. 12.12, p. 342)

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Attitude-DCM-dot}
\begin{aligned}
  \mathbf{\dotup{C}}_b^n &= \mathbf{C}_b^n \mathbf{\Omega}_{nb}^b \\
                       &= \mathbf{C}_b^n (\mathbf{\Omega}_{ib}^b - \mathbf{\Omega}_{in}^b) \\
                       &= \mathbf{C}_b^n (\mathbf{\Omega}_{ib}^b - \mathbf{C}_n^b \mathbf{\Omega}_{in}^n \mathbf{C}_b^n) \\
                       &= \mathbf{C}_b^n \mathbf{\Omega}_{ib}^b - \mathbf{\Omega}_{in}^n \mathbf{C}_b^n
\end{aligned}
\end{equation}

where

  • $ \mathbf{\Omega}_{ib}^b $ is the skew-symmetric matrix of the absolute body rate,
  • $ \mathbf{\Omega}_{in}^b $ is the skew-symmetric matrix of the navigation frame rate,
  • $ \mathbf{\Omega}_{ie}^n $ is the skew-symmetric matrix of the earth rotation in navigation frame coordinates ([17] Groves, ch. 5.4.1, eq. 5.41, p. 177), and
  • $ \mathbf{\Omega}_{en}^n $ is the skew-symmetric matrix of the transport rate (rotation of the local-navigation-frame with respect to the Earth) ([17] Groves, ch. 5.4.1, eq. 5.44, p. 177)

Similarly, the time time differential of the estimated matrix $ \mathbf{\dotup{\hat{C}}}_b^{\raise-1.25ex\hbox{$\scriptstyle n$}} $ can be calculated:

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Attitude-DCM-dot-estimated}
  \mathbf{\dotup{\hat{C}}}_b^{\raise-1.25ex\hbox{$\scriptstyle n$}} = \mathbf{\hat{C}}_b^n \mathbf{\hat{\Omega}}_{ib}^b - \mathbf{\hat{\Omega}}_{in}^n \mathbf{\hat{C}}_b^n
\end{equation}

where

  • $ \mathbf{\hat{\Omega}}_{in}^b $ is the skew-symmetric matrix of the measured body rate,
  • $ \mathbf{\Omega}_{in}^b $ is the skew-symmetric matrix of the estimated turn rate of the navigation reference frame,

Substituting \eqref{eq:eq-LCKF_n-Derivation-Attitude-DCM-dot} and \eqref{eq:eq-LCKF_n-Derivation-Attitude-DCM-dot-estimated} into \eqref{eq:eq-LCKF_n-Derivation-Attitude-skew-mat-dot}

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Attitude-skew-mat-dot-calc1}
\begin{aligned}
  \mathbf{\dotup{\Psi}} &= -(\mathbf{\hat{C}}_b^n \mathbf{\hat{\Omega}}_{ib}^b - \mathbf{\hat{\Omega}}_{in}^n \mathbf{\hat{C}}_b^n) {\mathbf{C}_b^n}^T
                         - \mathbf{\hat{C}}_b^n (\mathbf{C}_b^n \mathbf{\Omega}_{ib}^b - \mathbf{\Omega}_{in}^n \mathbf{C}_b^n)^T \\
                      &= - \mathbf{\hat{C}}_b^n \mathbf{\hat{\Omega}}_{ib}^b {\mathbf{C}_b^n}^T
                         + \mathbf{\hat{\Omega}}_{in}^n \mathbf{\hat{C}}_b^n {\mathbf{C}_b^n}^T
                         + \mathbf{\hat{C}}_b^n \mathbf{\Omega}_{ib}^b {\mathbf{C}_b^n}^T
                         - \mathbf{\hat{C}}_b^n {\mathbf{C}_b^n}^T \mathbf{\Omega}_{in}^n \\
                      &= - \mathbf{\hat{C}}_b^n \left[ \mathbf{\hat{\Omega}}_{ib}^b - \mathbf{\Omega}_{ib}^b \right] {\mathbf{C}_b^n}^T
                         + \mathbf{\hat{\Omega}}_{in}^n \mathbf{\hat{C}}_b^n {\mathbf{C}_b^n}^T
                         - \mathbf{\hat{C}}_b^n {\mathbf{C}_b^n}^T \mathbf{\Omega}_{in}^n
\end{aligned}
\end{equation}

Substituting \eqref{eq:eq-LCKF_n-Derivation-Attitude-estimate-errors} into \eqref{eq:eq-LCKF_n-Derivation-Attitude-skew-mat-dot-calc1} gives:

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Attitude-skew-mat-dot-calc2}
\begin{aligned}
  \mathbf{\dotup{\Psi}} &= - [\mathbf{I} - \mathbf{\Psi}] \mathbf{C}_b^n \left[ \mathbf{\hat{\Omega}}_{ib}^b - \mathbf{\Omega}_{ib}^b \right] {\mathbf{C}_b^n}^T
                         + \mathbf{\hat{\Omega}}_{in}^n [\mathbf{I} - \mathbf{\Psi}] \mathbf{C}_b^n {\mathbf{C}_b^n}^T
                         - [\mathbf{I} - \mathbf{\Psi}] \mathbf{C}_b^n {\mathbf{C}_b^n}^T \mathbf{\Omega}_{in}^n \\
                      &= - [\mathbf{I} - \mathbf{\Psi}] \mathbf{C}_b^n \left[ \mathbf{\hat{\Omega}}_{ib}^b - \mathbf{\Omega}_{ib}^b \right] {\mathbf{C}_b^n}^T
                         + \mathbf{\hat{\Omega}}_{in}^n - \mathbf{\hat{\Omega}}_{in}^n \mathbf{\Psi}
                         - \mathbf{\Omega}_{in}^n + \mathbf{\Psi} \mathbf{\Omega}_{in}^n \\
                         &= - [\mathbf{I} - \mathbf{\Psi}] \mathbf{C}_b^n \left[ \mathbf{\hat{\Omega}}_{ib}^b - \mathbf{\Omega}_{ib}^b \right] {\mathbf{C}_b^n}^T
                            + \left[ \mathbf{\hat{\Omega}}_{in}^n - \mathbf{\Omega}_{in}^n \right]
                            - \mathbf{\hat{\Omega}}_{in}^n \mathbf{\Psi} + \mathbf{\Psi} \mathbf{\Omega}_{in}^n
\end{aligned}
\end{equation}

Now we make the following substitutions

  • $ \boldsymbol{\delta}\mathbf{\Omega}_{in}^n = \mathbf{\hat{\Omega}}_{in}^n - \mathbf{\Omega}_{in}^n $
  • $ \boldsymbol{\delta}\mathbf{\Omega}_{ib}^b = \mathbf{\hat{\Omega}}_{ib}^b - \mathbf{\Omega}_{ib}^b $

and neglect error product terms. This leads to (same as [47] Titterton, ch. 12.3.1.1, eq. 12.17, p. 343)

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Attitude-skew-mat-dot-final}
  \mathbf{\dotup{\Psi}} \approx \mathbf{\Psi} \mathbf{\Omega}_{in}^n - \mathbf{\hat{\Omega}}_{in}^n \mathbf{\Psi}
                              + \boldsymbol{\delta}\mathbf{\Omega}_{in}^n
                              - \mathbf{C}_b^n \boldsymbol{\delta}\mathbf{\Omega}_{ib}^b {\mathbf{C}_b^n}^T
\end{equation}

Finally by performing an element by element comparison with

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Attitude-element-comp}
  \boldsymbol{\delta \psi} \times = \mathbf{\Psi} \qquad\quad
  \boldsymbol{\omega}_{in}^n \times = \mathbf{\Omega}_{in}^n \qquad\quad
  \boldsymbol{\delta \omega}_{in}^n \times = \boldsymbol{\delta}\mathbf{\Omega}_{in}^n \qquad\quad
  \boldsymbol{\delta \omega}_{ib}^b \times = \boldsymbol{\delta}\mathbf{\Omega}_{ib}^b
\end{equation}

the equation can be expressed in vector form as:

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Attitude-differential}
\begin{aligned}
  \boldsymbol{\delta \dotup{\psi}} &\approx \highlight[green!20]{-\boldsymbol{\omega}_{in}^n \times} \boldsymbol{\delta \psi}
                                                + \boldsymbol{\delta \omega}_{in}^n
                                                \highlight[orange!20]{- \mathbf{C}_b^n} \boldsymbol{\delta \omega}_{ib}^b \\
                                       &= \highlight[green!20]{-\boldsymbol{\omega}_{in}^n \times} \boldsymbol{\delta \psi}
                                          + \boldsymbol{\delta}(\boldsymbol{\omega}_{ie}^n + \boldsymbol{\omega}_{en}^n)
                                          \highlight[orange!20]{- \mathbf{C}_b^n} \boldsymbol{\delta \omega}_{ib}^b
\end{aligned}
\end{equation}

The transport rate $ \boldsymbol{\omega}_{en}^n $ is defined as (see [17] Groves, ch. 5.4.1, eq. 5.44, p. 177 or [14] Gleason, ch. 6.2.3.2, eq. 6.15, p. 155)

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Attitude-transport-rate}
  \boldsymbol{\omega}_{en}^n = \begin{bmatrix} \dfrac{v_E}{R_E + h} & -\dfrac{v_N}{R_N + h} & -\dfrac{v_E \tan{\phi}}{R_E + h} \end{bmatrix}^T
\end{equation}

The differential of left and right side neglecting errors in $R_N $ and $R_E $ ( $ \nicefrac{\partial R_N}{\partial p_i} = 0 $ and $ \quad \nicefrac{\partial R_E}{\partial p_i} = 0$)

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Attitude-transport-rate-differential}
\begin{aligned}
  \delta \omega_{en,1}^n &= \frac{\partial \omega_{en,1}^n}{\partial v_E} \delta v_E
                              + \frac{\partial\omega_{en,1}^n}{\partial h} \delta h
                            = \frac{1}{R_E + h} \delta v_E
                              - \frac{v_E}{(R_E + h)^2} \delta h \\
  \delta \omega_{en,2}^n &= \frac{\partial \omega_{en,2}^n}{\partial v_N} \delta v_N
                              + \frac{\partial \omega_{en,2}^n}{\partial h} \delta h
                            = -\frac{1}{R_N + h} \delta v_N
                              + \frac{v_N}{(R_N + h)^2} \delta h \\
  \delta \omega_{en,3}^n &= \frac{\partial \omega_{en,3}^n}{\partial v_E} \delta v_E
                              + \frac{\partial \omega_{en,3}^n}{\partial h} \delta h
                              + \frac{\partial \omega_{en,3}^n}{\partial \phi} \delta \phi
                            = -\frac{\tan{\phi}}{R_E + h} \delta v_E
                              + \frac{v_E \tan{\phi}}{(R_E + h)^2} \delta h
                              - \frac{v_E}{(R_E + h)\cos^2{\phi}} \delta \phi
\end{aligned}
\end{equation}

The Earth rotation in local-navigation-frame coordinates $ \boldsymbol{\omega}_{ie}^n $ is given

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Attitude-earth-rotation-n}
  \boldsymbol{\omega}_{ie}^n = \mathbf{C}_e^n \boldsymbol{\omega}_{ie}^e
                             = \begin{pmatrix} -\sin{\phi}\cos{\lambda} & -\sin{\phi}\sin{\lambda} & \cos{\phi} \\
                                                    -\sin{\lambda}      &      \cos{\lambda}       &      0     \\
                                               -\cos{\phi}\cos{\lambda} & -\cos{\phi}\sin{\lambda} & -\sin{\phi} \end{pmatrix}
                               \cdot \begin{pmatrix} 0 \\ 0 \\ \omega_{ie} \end{pmatrix}
                             = \omega_{ie} \cdot \begin{pmatrix} \cos{\phi} \\ 0 \\ -\sin{\phi} \end{pmatrix}
\end{equation}

The differential of left and right side is

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Attitude-earth-rotation-n-differential}
\begin{aligned}
  \boldsymbol{\delta \omega}_{ie}^n = \frac{\partial \boldsymbol{\omega}_{ie}^n}{\partial \phi} \delta \phi
                                    = \begin{pmatrix} -\omega_{ie}\sin{\phi} \\ 0 \\ -\omega_{ie}\cos{\phi} \end{pmatrix} \delta \phi
\end{aligned}
\end{equation}

Substituting \eqref{eq:eq-LCKF_n-Derivation-Attitude-transport-rate-differential} and \eqref{eq:eq-LCKF_n-Derivation-Attitude-earth-rotation-n-differential} into \eqref{eq:eq-LCKF_n-Derivation-Attitude-differential} gives:

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Attitude-differential-final}
  \boldsymbol{\delta \dotup{\psi}} \approx \highlight[green!20]{-\boldsymbol{\omega}_{in}^n \times} \boldsymbol{\delta \psi}
                                         + \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
                                             \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.4em,
                                                         nodes={rectangle,minimum height=2.3em,anchor=center}] {
                                               -\omega_{ie}\sin{\phi} \\
                                                          0           \\
                                               -\omega_{ie}\cos{\phi} \\
                                             };
                                             \begin{pgfonlayer}{background} \fhighlight[lime!20]{m-1-1}{m-3-1} \end{pgfonlayer}
                                           \end{tikzpicture}
                                           \delta \phi
                                         + \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
                                             \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.4em,
                                                         nodes={rectangle,minimum height=2.3em,anchor=center}] {
                                                        0         &      \frac{1}{R_E + h}      & 0 \\
                                               -\frac{1}{R_N + h} &              0              & 0 \\
                                                        0         & -\frac{\tan{\phi}}{R_E + h} & 0 \\
                                             };

                                             \foreach \r in {1,3} {
                                               \foreach \c in {1,3} {
                                                 \coordinate (m-\r-\c-nw) at (100,-100);
                                                 \coordinate (m-\r-\c-se) at (-100,100);

                                                 \foreach \row in {1,...,3} {
                                                   \path let \p1=(m-\row-\c.west), \p2=(m-\r-\c-nw) in coordinate (m-\r-\c-nw) at ({min(\x1,\x2)},\y2);
                                                   \path let \p1=(m-\row-\c.east), \p2=(m-\r-\c-se) in coordinate (m-\r-\c-se) at ({max(\x1,\x2)},\y2);
                                                 }
                                                 \foreach \col in {1,...,3} {
                                                   \path let \p1=(m-\r-\col.north), \p2=(m-\r-\c-nw) in coordinate (m-\r-\c-nw) at (\x2,{max(\y1,\y2)});
                                                   \path let \p1=(m-\r-\col.south), \p2=(m-\r-\c-se) in coordinate (m-\r-\c-se) at (\x2,{min(\y1,\y2)});
                                                 }
                                               }
                                             }
                                             \begin{pgfonlayer}{background} \fhighlight[yellow!20]{m-1-1-nw}{m-3-3-se} \end{pgfonlayer}
                                           \end{tikzpicture}
                                           \begin{pmatrix} \delta v_N \\ \delta v_E \\ \delta v_D \end{pmatrix}
                                         + \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
                                             \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.4em,
                                                         nodes={rectangle,minimum height=2.3em,anchor=center}] {
                                                                0                  & 0 &       -\frac{v_E}{(R_E + h)^2}      \\
                                                                0                  & 0 &        \frac{v_N}{(R_N + h)^2}      \\
                                               - \frac{v_E}{(R_E + h)\cos^2{\phi}} & 0 &  \frac{v_E \tan{\phi}}{(R_E + h)^2} \\
                                             };

                                             \foreach \r in {1,3} {
                                               \foreach \c in {1,3} {
                                                 \coordinate (m-\r-\c-nw) at (100,-100);
                                                 \coordinate (m-\r-\c-se) at (-100,100);

                                                 \foreach \row in {1,...,3} {
                                                   \path let \p1=(m-\row-\c.west), \p2=(m-\r-\c-nw) in coordinate (m-\r-\c-nw) at ({min(\x1,\x2)},\y2);
                                                   \path let \p1=(m-\row-\c.east), \p2=(m-\r-\c-se) in coordinate (m-\r-\c-se) at ({max(\x1,\x2)},\y2);
                                                 }
                                                 \foreach \col in {1,...,3} {
                                                   \path let \p1=(m-\r-\col.north), \p2=(m-\r-\c-nw) in coordinate (m-\r-\c-nw) at (\x2,{max(\y1,\y2)});
                                                   \path let \p1=(m-\r-\col.south), \p2=(m-\r-\c-se) in coordinate (m-\r-\c-se) at (\x2,{min(\y1,\y2)});
                                                 }
                                               }
                                             }
                                             \begin{pgfonlayer}{background} \fhighlight[lime!20]{m-1-1-nw}{m-3-3-se} \end{pgfonlayer}
                                           \end{tikzpicture}
                                           \begin{pmatrix} \delta \phi \\ \delta \lambda \\ \delta h \end{pmatrix}
                                         \highlight[orange!20]{- \mathbf{C}_b^n} \boldsymbol{\delta \omega}_{ib}^b
\end{equation}

Velocity Equations

The equations here mainly follow [47] Titterton, ch. 12.3.1.2, p. 343f

The time derivative of the velocity in local-navigation-frame coordinates is (see [47] Titterton, ch. 3.7.1, eq. 3.69, p. 47 or [24] Jekeli, ch. 4.3.4, eq. 4.88, p. 127)

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Velocity-timeDerivative}
  \boldsymbol{\dotup{v}}^n
      = \overbrace{\boldsymbol{f}^n}^{\hidewidth\text{measured}\hidewidth}
        -\ \underbrace{(2 \boldsymbol{\omega}_{ie}^n + \boldsymbol{\omega}_{en}^n) \times \boldsymbol{v}^n}_{\text{coriolis acceleration}}
        +\ \overbrace{\mathbf{g}^n}^{\hidewidth\text{gravity}\hidewidth}
\end{equation}

where

  • $ \boldsymbol{v}^n = \begin{pmatrix} v_N & v_E & v_D \end{pmatrix}^T $ is the velocity with respect to the Earth in local-navigation frame coordinates,
  • $ \boldsymbol{f}^n = \begin{pmatrix} f_N & f_E & f_D \end{pmatrix}^T $ is the specific force vector as measured by a triad of accelerometers and resolved into local-navigation frame coordinates
  • $ \boldsymbol{\omega}_{ie}^n $ is the turn rate of the Earth expressed in local-navigation frame coordinates
  • $ \boldsymbol{\omega}_{en}^n $ is the turn rate of the local frame with respect to the Earth-fixed frame, called the transport rate, expressed in local-navigation frame coordinates
  • $ \mathbf{g}^n $ is the local gravity vector which is a combination of (see [47] Titterton, ch. 3.7.1, eq. 3.75, p. 48)
    • $ \boldsymbol{\gamma}_{ib}^n $ the local gravitation vector (caused by effects of mass attraction)
    • $ -\boldsymbol{\omega}_{ie}^e \times [ \boldsymbol{\omega}_{ie}^e \times \mathbf{r}^e ] $ the centrifugal acceleration caused by the Earth's rotation

The estimated velocity follows the same propagation

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Velocity-timeDerivative-estimate}
  \boldsymbol{\dotup{\hat{v}}}^{\raise-0.45ex\hbox{$\scriptstyle n$}}
      = \boldsymbol{\hat{f}}^n
      - (2 \boldsymbol{\hat{\omega}}_{ie}^n + \boldsymbol{\hat{\omega}}_{en}^n) \times \boldsymbol{\hat{v}}_e^n
      + \mathbf{\hat{g}}^n
\end{equation}

Differencing equation \eqref{eq:eq-LCKF_n-Derivation-Velocity-timeDerivative} and \eqref{eq:eq-LCKF_n-Derivation-Velocity-timeDerivative-estimate} we get

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Velocity-timeDerivative-differential}
\begin{aligned}
  \boldsymbol{\delta \dotup{v}}^n &= \boldsymbol{\dotup{\hat{v}}}^{\raise-0.45ex\hbox{$\scriptstyle n$}} - \boldsymbol{\dotup{v}}^n \\
                                &= \mathbf{\hat{C}}_b^n \boldsymbol{\hat{f}}^b
                                       - \mathbf{C}_b^n \boldsymbol{f}^b
                                   - (2 \boldsymbol{\hat{\omega}}_{ie}^n + \boldsymbol{\hat{\omega}}_{en}^n) \times \boldsymbol{\hat{v}}^n
                                       + (2 \boldsymbol{\omega}_{ie}^n + \boldsymbol{\omega}_{en}^n) \times \boldsymbol{v}^n
                                   + \mathbf{\hat{g}}^n
                                       - \mathbf{g}^n
\end{aligned}
\end{equation}

  • Substituting equation \eqref{eq:eq-LCKF_n-Derivation-Attitude-estimate-errors} : $ \mathbf{\hat{C}}_b^n \approx [\mathbf{I} - \mathbf{\Psi}] \mathbf{C}_b^n $
  • and writing
    • $ \boldsymbol{\delta f}^b = \boldsymbol{\hat{f}}^b - \boldsymbol{f}^b $
    • $ \boldsymbol{\delta v}^n = \boldsymbol{\hat{v}}^n - \boldsymbol{v}^n $
    • $ \boldsymbol{\delta \omega}_{ie}^n = \boldsymbol{\hat{\omega}}_{ie}^n - \boldsymbol{\omega}_{ie}^n $
    • $ \boldsymbol{\delta \omega}_{en}^n = \boldsymbol{\hat{\omega}}_{en}^n - \boldsymbol{\omega}_{en}^n $
    • $ \boldsymbol{\delta} \mathbf{g}^n = \mathbf{\hat{g}}^n - \mathbf{g}^n $

we get

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Velocity-timeDerivative-differential-transformation}
\begin{aligned}
  \boldsymbol{\delta \dotup{v}}^n &= [\mathbf{I} - \mathbf{\Psi}] \mathbf{C}_b^n \boldsymbol{\hat{f}}^b
                                       - \mathbf{C}_b^n \boldsymbol{f}^b
                                   - (2 \boldsymbol{\delta \omega}_{ie}^n + 2 \boldsymbol{\omega}_{ie}^n + \boldsymbol{\delta \omega}_{en}^n + \boldsymbol{\omega}_{en}^n) \times \boldsymbol{\hat{v}}^n
                                       + (2 \boldsymbol{\omega}_{ie}^n + \boldsymbol{\omega}_{en}^n) \times \boldsymbol{v}^n
                                   + \boldsymbol{\delta} \mathbf{g}^n \\
                                &= \mathbf{C}_b^n \boldsymbol{\hat{f}}^b - \mathbf{\Psi} \mathbf{C}_b^n \boldsymbol{\hat{f}}^b
                                       - \mathbf{C}_b^n \boldsymbol{f}^b
                                   - (2 \boldsymbol{\omega}_{ie}^n + \boldsymbol{\omega}_{en}^n) \times \boldsymbol{\hat{v}}^n
                                   - (2 \boldsymbol{\delta \omega}_{ie}^n + \boldsymbol{\delta \omega}_{en}^n) \times \boldsymbol{\hat{v}}^n
                                       + (2 \boldsymbol{\omega}_{ie}^n + \boldsymbol{\omega}_{en}^n) \times \boldsymbol{v}^n
                                   + \boldsymbol{\delta} \mathbf{g}^n \\
                                &= - \boldsymbol{\delta \psi} \times \mathbf{C}_b^n \boldsymbol{\hat{f}}^b
                                   + \highlight[red!20]{\mathbf{C}_b^n \boldsymbol{\delta f}^b}
                                   - (2 \boldsymbol{\omega}_{ie}^n + \boldsymbol{\omega}_{en}^n) \times \boldsymbol{\delta v}^n
                                   - (2 \boldsymbol{\delta \omega}_{ie}^n + \boldsymbol{\delta \omega}_{en}^n) \times \boldsymbol{\hat{v}}^n
                                   + \boldsymbol{\delta} \mathbf{g}^n \\
                                &= (\mathbf{C}_b^n \boldsymbol{\delta f}^b + \mathbf{C}_b^n \boldsymbol{f}^b) \times \boldsymbol{\delta \psi}
                                   + \highlight[red!20]{\mathbf{C}_b^n \boldsymbol{\delta f}^b}
                                   - (2 \boldsymbol{\omega}_{ie}^n + \boldsymbol{\omega}_{en}^n) \times \boldsymbol{\delta v}^n
                                   - (2 \boldsymbol{\delta \omega}_{ie}^n + \boldsymbol{\delta \omega}_{en}^n) \times (\boldsymbol{\delta v}^n + \boldsymbol{v}^n)
                                   + \boldsymbol{\delta} \mathbf{g}^n \\
\end{aligned}
\end{equation}

Now neglecting error product terms $ \boldsymbol{\delta f}^b \times \boldsymbol{\delta \psi} \approx 0 $ and $ (2 \boldsymbol{\delta \omega}_{ie}^n + \boldsymbol{\delta \omega}_{en}^n) \times \boldsymbol{\delta v}^n \approx 0$

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Velocity-timeDerivative-differential-transformation-neglect}
  \boldsymbol{\delta \dotup{v}}^n \approx \highlight[purple!20]{\boldsymbol{f}^n \times} \boldsymbol{\delta \psi}
                                   + \highlight[red!20]{\mathbf{C}_b^n \boldsymbol{\delta f}^b}
                                   - (2 \boldsymbol{\omega}_{ie}^n + \boldsymbol{\omega}_{en}^n) \times \boldsymbol{\delta v}^n
                                   - (2 \boldsymbol{\delta \omega}_{ie}^n + \boldsymbol{\delta \omega}_{en}^n) \times \boldsymbol{v}^n
                                   + \boldsymbol{\delta} \mathbf{g}^n
\end{equation}

This is equal to [47] Titterton, ch. 12.3.1.2, eq. 12.21, p. 344, except the sign of the gravity error term.

Substituting equations \eqref{eq:eq-LCKF_n-Derivation-Attitude-transport-rate} , \eqref{eq:eq-LCKF_n-Derivation-Attitude-transport-rate-differential} , \eqref{eq:eq-LCKF_n-Derivation-Attitude-earth-rotation-n} and \eqref{eq:eq-LCKF_n-Derivation-Attitude-earth-rotation-n-differential} leads to

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Velocity-timeDerivative-final-pre}
\renewcommand*{\arraystretch}{1.9}
\begin{aligned}
  \boldsymbol{\delta \dotup{v}}^n &\approx \highlight[purple!20]{\boldsymbol{f}^n \times} \boldsymbol{\delta \psi}
                                   + \highlight[red!20]{\mathbf{C}_b^n \boldsymbol{\delta f}^b}
                                   - \left[\begin{pmatrix} 2 \omega_{ie} \cos{\phi} \\ 0 \\ - 2 \omega_{ie} \sin{\phi} \end{pmatrix}
                                      + \begin{pmatrix} \frac{v_E}{R_E + h} \\ -\frac{v_N}{R_N + h} \\ -\frac{v_E \tan{\phi}}{R_E + h} \end{pmatrix} \right]
                                          \times \begin{pmatrix} \delta v_N \\ \delta v_E \\ \delta v_D \end{pmatrix}
                                   - \left[\begin{pmatrix} -2\omega_{ie}\sin{\phi}\ \delta \phi \\ 0 \\ -2\omega_{ie}\cos{\phi}\ \delta \phi \end{pmatrix}
                                      + \begin{pmatrix}
                                          \frac{1}{R_E + h} \delta v_E - \frac{v_E}{(R_E + h)^2} \delta h \\
                                          -\frac{1}{R_N + h} \delta v_N + \frac{v_N}{(R_N + h)^2} \delta h \\
                                          -\frac{\tan{\phi}}{R_E + h} \delta v_E + \frac{v_E \tan{\phi}}{(R_E + h)^2} \delta h - \frac{v_E}{(R_E + h)\cos^2{\phi}} \delta \phi \\
                                        \end{pmatrix} \right]
                                          \times \begin{pmatrix} v_N \\ v_E \\ v_D \end{pmatrix}
                                   + \boldsymbol{\delta} \mathbf{g}^n \\
                                &= \highlight[purple!20]{\boldsymbol{f}^n \times} \boldsymbol{\delta \psi}
                                   + \highlight[red!20]{\mathbf{C}_b^n \boldsymbol{\delta f}^b}
                                   + \begin{pmatrix} - 2 \omega_{ie} \cos{\phi} - \frac{v_E}{R_E + h} \\
                                                      \frac{v_N}{R_N + h} \\
                                                      2 \omega_{ie} \sin{\phi} + \frac{v_E \tan{\phi}}{R_E + h}
                                     \end{pmatrix}
                                     \times \begin{pmatrix} \delta v_N \\
                                                            \delta v_E \\
                                                            \delta v_D \\
                                            \end{pmatrix}
                                   + \begin{pmatrix} 2\omega_{ie}\sin{\phi}\ \delta \phi - \frac{1}{R_E + h} \delta v_E + \frac{v_E}{(R_E + h)^2} \delta h \\
                                                     \frac{1}{R_N + h} \delta v_N - \frac{v_N}{(R_N + h)^2} \delta h \\
                                                     2\omega_{ie}\cos{\phi}\ \delta \phi + \frac{\tan{\phi}}{R_E + h} \delta v_E - \frac{v_E \tan{\phi}}{(R_E + h)^2} \delta h + \frac{v_E}{(R_E + h)\cos^2{\phi}} \delta \phi
                                     \end{pmatrix}
                                     \times \begin{pmatrix} v_N \\
                                                            v_E \\
                                                            v_D \\
                                            \end{pmatrix}
                                   + \boldsymbol{\delta} \mathbf{g}^n \\
                                &= \highlight[purple!20]{\boldsymbol{f}^n \times} \boldsymbol{\delta \psi}
                                   + \highlight[red!20]{\mathbf{C}_b^n \boldsymbol{\delta f}^b}
                                   + \begin{pmatrix} \left(\frac{v_N}{R_N + h} \right) \cdot \delta v_D
                                                            - \left(2 \omega_{ie} \sin{\phi} + \frac{v_E \tan{\phi}}{R_E + h} \right) \cdot \delta v_E \\
                                                     \left(2 \omega_{ie} \sin{\phi} + \frac{v_E \tan{\phi}}{R_E + h} \right) \cdot \delta v_N
                                                            - \left(- 2 \omega_{ie} \cos{\phi} - \frac{v_E}{R_E + h} \right) \cdot \delta v_D \\
                                                     \left(- 2 \omega_{ie} \cos{\phi} - \frac{v_E}{R_E + h} \right) \cdot \delta v_E
                                                            - \left(\frac{v_N}{R_N + h} \right) \cdot \delta v_N \\
                                     \end{pmatrix}
                                   + \begin{pmatrix} \left( \frac{1}{R_N + h} \delta v_N - \frac{v_N}{(R_N + h)^2} \delta h \right) \cdot v_D - \left( 2\omega_{ie}\cos{\phi}\ \delta \phi + \frac{\tan{\phi}}{R_E + h} \delta v_E - \frac{v_E \tan{\phi}}{(R_E + h)^2} \delta h + \frac{v_E}{(R_E + h)\cos^2{\phi}} \delta \phi \right) \cdot v_E \\
                                                     \left( 2\omega_{ie}\cos{\phi}\ \delta \phi + \frac{\tan{\phi}}{R_E + h} \delta v_E - \frac{v_E \tan{\phi}}{(R_E + h)^2} \delta h + \frac{v_E}{(R_E + h)\cos^2{\phi}} \delta \phi \right) \cdot v_N - \left( 2\omega_{ie}\sin{\phi}\ \delta \phi - \frac{1}{R_E + h} \delta v_E + \frac{v_E}{(R_E + h)^2} \delta h \right) \cdot v_D \\
                                                     \left( 2\omega_{ie}\sin{\phi}\ \delta \phi - \frac{1}{R_E + h} \delta v_E + \frac{v_E}{(R_E + h)^2} \delta h \right) \cdot v_E - \left( \frac{1}{R_N + h} \delta v_N - \frac{v_N}{(R_N + h)^2} \delta h \right) \cdot v_N \\
                                     \end{pmatrix}
                                   + \boldsymbol{\delta} \mathbf{g}^n \\
\end{aligned}
\end{equation}

The gravity error can be expressed as (see [17] Groves, ch. 14.2.4, eq. 14.59, p. 586)

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Velocity-gravityError}
\begin{aligned}
  \boldsymbol{\delta} \mathbf{g}^e \approx - \frac{2 g_0}{r_{eS}^e} \delta h \mathbf{u}_D^e
\end{aligned}
\end{equation}

where

  • $ \mathbf{u}_D^e $ is the local navigation frame down unit vector
  • $ h << r_{eS}^e $ is assumed
  • centrifugal term and latitude-error dependence have been neglected

Reordering the terms leads to the final form

\begin{equation} \label{eq:eq-LCKF_n-Derivation-Velocity-timeDerivative-final}
  \boldsymbol{\delta \dotup{v}}^n \approx \highlight[purple!20]{\boldsymbol{f}^n \times} \boldsymbol{\delta \psi}
                                        + \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
                                            \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.4em,
                                                        nodes={rectangle,minimum height=2.3em,anchor=center}] {
                                                        \frac{v_D}{R_N + h} & - \frac{v_E \tan{\phi}}{R_E + h} - 2 \omega_{ie} \sin{\phi} - \frac{v_E \tan{\phi}}{R_E + h} & \frac{v_N}{R_N + h} \\
                                                        \frac{v_E \tan{\phi}}{R_E + h} + 2 \omega_{ie} \sin{\phi} & \frac{v_N \tan{\phi}}{R_E + h} + \frac{v_D}{R_E + h} & \frac{v_E}{R_E + h} + 2 \omega_{ie} \cos{\phi} \\
                                                        - \frac{v_N}{R_N + h} - \frac{v_N}{R_N + h} & - 2 \omega_{ie} \cos{\phi} - \frac{v_E}{R_E + h} - \frac{v_E}{R_E + h} & 0 \\
                                            };

                                            \foreach \r in {1,3} {
                                              \foreach \c in {1,3} {
                                                \coordinate (m-\r-\c-nw) at (100,-100);
                                                \coordinate (m-\r-\c-se) at (-100,100);

                                                \foreach \row in {1,...,3} {
                                                  \path let \p1=(m-\row-\c.west), \p2=(m-\r-\c-nw) in coordinate (m-\r-\c-nw) at ({min(\x1,\x2)},\y2);
                                                  \path let \p1=(m-\row-\c.east), \p2=(m-\r-\c-se) in coordinate (m-\r-\c-se) at ({max(\x1,\x2)},\y2);
                                                }
                                                \foreach \col in {1,...,3} {
                                                  \path let \p1=(m-\r-\col.north), \p2=(m-\r-\c-nw) in coordinate (m-\r-\c-nw) at (\x2,{max(\y1,\y2)});
                                                  \path let \p1=(m-\r-\col.south), \p2=(m-\r-\c-se) in coordinate (m-\r-\c-se) at (\x2,{min(\y1,\y2)});
                                                }
                                              }
                                            }
                                            \begin{pgfonlayer}{background} \fhighlight[blue!20]{m-1-1-nw}{m-3-3-se} \end{pgfonlayer}
                                          \end{tikzpicture}
                                          \begin{pmatrix} \delta v_N \\
                                                          \delta v_E \\
                                                          \delta v_D \\
                                          \end{pmatrix}
                                        + \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
                                            \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.4em,
                                                        nodes={rectangle,minimum height=2.3em,anchor=center}] {
                                                        - \frac{v_E^2}{(R_E + h)\cos^2{\phi}} - 2 v_E \omega_{ie}\cos{\phi} & 0 & \frac{v_E^2 \tan{\phi}}{(R_E + h)^2} - \frac{v_N v_D}{(R_N + h)^2} \\
                                                        \frac{v_N v_E}{(R_E + h)\cos^2{\phi}} + 2 v_N \omega_{ie}\cos{\phi} - 2 v_D \omega_{ie}\sin{\phi} & 0 & - \frac{v_N v_E \tan{\phi}}{(R_E + h)^2} - \frac{v_E v_D}{(R_E + h)^2} \\
                                                        2 v_E \omega_{ie}\sin{\phi} & 0 & \frac{v_E^2}{(R_E + h)^2} + \frac{v_N^2}{(R_N + h)^2} - \frac{2 g_0}{r_{eS}^e} \\
                                            };

                                            \foreach \r in {1,3} {
                                              \foreach \c in {1,3} {
                                                \coordinate (m-\r-\c-nw) at (100,-100);
                                                \coordinate (m-\r-\c-se) at (-100,100);

                                                \foreach \row in {1,...,3} {
                                                  \path let \p1=(m-\row-\c.west), \p2=(m-\r-\c-nw) in coordinate (m-\r-\c-nw) at ({min(\x1,\x2)},\y2);
                                                  \path let \p1=(m-\row-\c.east), \p2=(m-\r-\c-se) in coordinate (m-\r-\c-se) at ({max(\x1,\x2)},\y2);
                                                }
                                                \foreach \col in {1,...,3} {
                                                  \path let \p1=(m-\r-\col.north), \p2=(m-\r-\c-nw) in coordinate (m-\r-\c-nw) at (\x2,{max(\y1,\y2)});
                                                  \path let \p1=(m-\r-\col.south), \p2=(m-\r-\c-se) in coordinate (m-\r-\c-se) at (\x2,{min(\y1,\y2)});
                                                }
                                              }
                                            }
                                            \begin{pgfonlayer}{background} \fhighlight[violet!20]{m-1-1-nw}{m-3-3-se} \end{pgfonlayer}
                                          \end{tikzpicture}
                                          \begin{pmatrix} \delta \phi \\
                                                          \delta \lambda \\
                                                          \delta h \\
                                          \end{pmatrix}
                                        + \highlight[red!20]{\mathbf{C}_b^n \boldsymbol{\delta f}^b}
\end{equation}

Error Equations comparison

Titterton

[47] Titterton, ch. 12.3.1.3, eq. 12.28, p. 345 has different sign in equations $ \highlight[yellow!20]{\mathbf{F}_{\delta \dotup{\psi},\delta v}^n} $, $ \highlight[lime!20]{\mathbf{F}_{\delta \dotup{\psi},\delta r}^n} $, $ \highlight[orange!20]{\mathbf{F}_{\delta \dotup{\psi},\delta \omega}^n} $, $ \highlight[purple!20]{\mathbf{F}_{\delta \dotup{v},\delta \psi}^n} $

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix-Titterton}
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},
                nodes={rectangle,text width=1.5em,align=center,minimum height=2.3em,anchor=center},row sep=0.3em, column sep=0.4em,] {
      \delta \dotup{R}              \\ \delta \dotup{P}              \\ \delta \dotup{Y}              \\
      \delta \dotup{v}_{N}          \\ \delta \dotup{v}_{E}          \\ \delta \dotup{v}_{D}          \\
      \delta \dotup{\phi}           \\ \delta \dotup{\lambda}        \\ \delta \dotup{h}              \\
      \delta \dotup{f}_{x}^{b}      \\ \delta \dotup{f}_{y}^{b}      \\ \delta \dotup{f}_{z}^{b}      \\
      \delta \dotup{\omega}_{x}^{b} \\ \delta \dotup{\omega}_{y}^{b} \\ \delta \dotup{\omega}_{z}^{b} \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\boldsymbol{\delta} \mathbf{\dotup{x}}$} (m-1-1.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-3-1}
      \fhighlight[blue!20]{m-4-1}{m-6-1}
      \fhighlight[cyan!20]{m-7-1}{m-9-1}
      \fhighlight[red!20]{m-10-1}{m-12-1}
      \fhighlight[orange!20]{m-13-1}{m-15-1}
    \end{pgfonlayer}
  \end{tikzpicture}
  =
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},nodes in empty cells,
                row sep=0.3em, column sep=0.4em,
                nodes={rectangle,minimum height=2.3em,anchor=center},] {
                  0            &     \omega_{in,3}^{n}    &    -\omega_{in,2}^{n}    &                             0                            &         \highlight[red!60]{+}\frac{1}{R_E + h}            &                       0                      &                             \highlight[red!60]{-}\omega_{ie}\sin{\phi}                             &      0       &                \highlight[red!60]{-}\frac{v_E}{(R_E + h)^2}                  &  &                &  &  &                                     & \\
         -\omega_{in,3}^{n}    &             0            &     \omega_{in,1}^{n}    &        \highlight[red!60]{-}\frac{1}{R_N + h}            &                             0                             &                       0                      &                                                0                                                   &      0       &                \highlight[red!60]{+}\frac{v_N}{(R_N + h)^2}                  &  &  \mathbf{0}_3  &  &  & \highlight[red!60]{-}\mathbf{C}_b^n & \\
          \omega_{in,2}^{n}    &    -\omega_{in,1}^{n}    &             0            &                             0                            &       \highlight[red!60]{-}\frac{\tan{\phi}}{R_E + h}     &                       0                      & \highlight[red!60]{-}\omega_{ie}\cos{\phi} \highlight[red!60]{-} \frac{v_E}{(R_E + h)\cos^2{\phi}} &      0       &            \highlight[red!60]{+}\frac{v_E \tan{\phi}}{(R_E + h)^2}           &  &                &  &  &                                     & \\
                  0            & \highlight[red!60]{-}f_D & \highlight[red!60]{+}f_E &                    \frac{v_D}{R_N + h}                   & -2\frac{v_E \tan{\phi}}{R_E + h} - 2\omega_{ie}\sin{\phi} &              \frac{v_N}{R_N + h}             &                   -\frac{v_E^2}{(R_E+h)\cos^2{\phi}}-2v_E\omega_{ie}\cos{\phi}                     &      0       &         \frac{v_E^2\tan{\phi}}{(R_E+h)^2} - \frac{v_Nv_D}{(R_N+h)^2}         &  &                &  &  &                                     & \\
      \highlight[red!60]{+}f_D &             0            & \highlight[red!60]{-}f_N &  \frac{v_E \tan{\phi}}{R_E + h} + 2\omega_{ie}\sin{\phi} &            \frac{v_N \tan{\phi} + v_D}{R_E + h}           & \frac{v_E}{R_E + h} + 2\omega_{ie}\cos{\phi} &    \frac{v_N v_E}{(R_E+h)\cos^2{\phi}} + 2v_N\omega_{ie}\cos{\phi} - 2v_D\omega_{ie}\sin{\phi}     &      0       &                -\frac{v_Nv_E\tan{\phi} + v_Ev_D}{(R_E + h)^2}                &  & \mathbf{C}_b^n &  &  &             \mathbf{0}_3            & \\
      \highlight[red!60]{-}f_E & \highlight[red!60]{+}f_N &             0            &                  -\frac{2v_N}{R_N + h}                   &       -\frac{2v_E}{R_E + h} - 2\omega_{ie}\cos{\phi}      &                       0                      &                                     2v_E\omega_{ie}\sin{\phi}                                      &      0       & \frac{v_E^2}{(R_E + h)^2} + \frac{v_N^2}{(R_N + h)^2} -\frac{2g_0}{r_{eS}^e} &  &                &  &  &                                     & \\
                               &                          &                          &                      \frac{1}{R_N+h}                     &                             0                             &                       0                      &                                                0                                                   &      0       &                           -\frac{v_N}{(R_N + h)^2}                           &  &                &  &  &                                     & \\
                               &       \mathbf{0}_3       &                          &                             0                            &                \frac{1}{(R_E+h)\cos{\phi}}                &                       0                      &                              \frac{v_E\tan{\phi}}{(R_E+h)\cos{\phi}}                               &      0       &                      -\frac{v_E}{(R_E + h)^2\cos{\phi}}                      &  &  \mathbf{0}_3  &  &  &             \mathbf{0}_3            & \\
                               &                          &                          &                             0                            &                             0                             &                      -1                      &                                                0                                                   &      0       &                                       0                                      &  &                &  &  &                                     & \\
                               &                          &                          &                                                          &                                                           &                                              &                                                                                                    &              &                                                                              &  &                &  &  &                                     & \\
                               &       \mathbf{0}_3       &                          &                                                          &                       \mathbf{0}_3                        &                                              &                                                                                                    & \mathbf{0}_3 &                                                                              &  &  \mathbf{0}_3  &  &  &             \mathbf{0}_3            & \\
                               &                          &                          &                                                          &                                                           &                                              &                                                                                                    &              &                                                                              &  &                &  &  &                                     & \\
                               &                          &                          &                                                          &                                                           &                                              &                                                                                                    &              &                                                                              &  &                &  &  &                                     & \\
                               &       \mathbf{0}_3       &                          &                                                          &                       \mathbf{0}_3                        &                                              &                                                                                                    & \mathbf{0}_3 &                                                                              &  &  \mathbf{0}_3  &  &  &             \mathbf{0}_3            & \\
                               &                          &                          &                                                          &                                                           &                                              &                                                                                                    &              &                                                                              &  &                &  &  &                                     & \\
    };

    \foreach \r in {1,3,4,6,7,9} {
      \foreach \c in {1,3,4,6,7,9,10,12,13,15} {
        \coordinate (m-\r-\c-nw) at (100,-100);
        \coordinate (m-\r-\c-se) at (-100,100);

        \foreach \row in {1,...,9} {
          \path let \p1=(m-\row-\c.west), \p2=(m-\r-\c-nw) in coordinate (m-\r-\c-nw) at ({min(\x1,\x2)},\y2);
          \path let \p1=(m-\row-\c.east), \p2=(m-\r-\c-se) in coordinate (m-\r-\c-se) at ({max(\x1,\x2)},\y2);
        }
        \foreach \col in {1,...,15} {
          \path let \p1=(m-\r-\col.north), \p2=(m-\r-\c-nw) in coordinate (m-\r-\c-nw) at (\x2,{max(\y1,\y2)});
          \path let \p1=(m-\r-\col.south), \p2=(m-\r-\c-se) in coordinate (m-\r-\c-se) at (\x2,{min(\y1,\y2)});
        }
      }
    }

    \path let \p1=(m-1-1-nw), \p2=(m-1-15-se) in coordinate (m-1-15-ne) at (\x2,\y1);
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1-nw) -- node[above=2pt] {$\mathbf{F}$} (m-1-15-ne);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1-nw}{m-3-3-se}
      \fhighlight[yellow!20]{m-1-4-nw}{m-3-6-se}
      \fhighlight[lime!20]{m-1-7-nw}{m-3-9-se}
      \fhighlight[orange!20]{m-1-13-nw}{m-3-15-se}
      \fhighlight[purple!20]{m-4-1-nw}{m-6-3-se}
      \fhighlight[blue!20]{m-4-4-nw}{m-6-6-se}
      \fhighlight[violet!20]{m-4-7-nw}{m-6-9-se}
      \fhighlight[red!20]{m-4-10-nw}{m-6-12-se}
      \fhighlight[teal!20]{m-7-4-nw}{m-9-6-se}
      \fhighlight[cyan!20]{m-7-7-nw}{m-9-9-se}
    \end{pgfonlayer}
  \end{tikzpicture}
  \cdot
  \begin{tikzpicture}[baseline=-\the\dimexpr\fontdimen22\textfont2\relax,decoration=brace]
    \matrix (m)[matrix of math nodes,left delimiter={(},right delimiter={)},row sep=0.3em, column sep=0.4em,
                nodes={rectangle,text width=1.5em,align=center,minimum height=2.3em,anchor=center},] {
      \delta R              \\ \delta P              \\ \delta Y              \\
      \delta v_{N}          \\ \delta v_{E}          \\ \delta v_{D}          \\
      \delta \phi           \\ \delta \lambda        \\ \delta h              \\
      \delta f_{x}^{b}      \\ \delta f_{y}^{b}      \\ \delta f_{z}^{b}      \\
      \delta \omega_{x}^{b} \\ \delta \omega_{y}^{b} \\ \delta \omega_{z}^{b} \\
    };
    \draw[decorate,transform canvas={yshift=.5em},thick] (m-1-1.north west) -- node[above=2pt] {$\boldsymbol{\delta} \mathbf{x}$} (m-1-1.north east);

    \begin{pgfonlayer}{background}
      \fhighlight[green!20]{m-1-1}{m-3-1}
      \fhighlight[blue!20]{m-4-1}{m-6-1}
      \fhighlight[cyan!20]{m-7-1}{m-9-1}
      \fhighlight[red!20]{m-10-1}{m-12-1}
      \fhighlight[orange!20]{m-13-1}{m-15-1}
    \end{pgfonlayer}
  \end{tikzpicture}
\end{equation}

As all signs related to the attitude error have a different sign, it can be explained by the attitude error being defined in the opposite direction. To check this, we can look at the definition of the correction of the state with the attitude errors ([17] Groves, ch. 14.1.1, eq. 14.7, p. 564)

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix-Groves-attitude-correction}
  \mathbf{C}_b^n \approx (\mathbf{I}_3 - [\boldsymbol{\delta \psi}_{nb}^n \times]) \mathbf{\hat{C}}_b^n
\end{equation}

while Titterton rearranges equation \eqref{eq:eq-LCKF_n-Derivation-Attitude-estimate-errors} and defines the correction as ([47] Titterton, ch. 13.6.2.3, eq. 13.15, p. 407)

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix-Groves-attitude-correction-Titterton}
  \mathbf{C}_b^n = (\mathbf{I}_3 + [\boldsymbol{\delta \psi} \times]) \mathbf{\hat{C}}_b^n
\end{equation}

Therefore the attitude error is defined differently in Groves and Titterton, which explains the sign change in the error equations.

Gleason

[14] Gleason, ch. 6.2.5, eq. 6.21-6.23, p. 157 define the same error equations as Titterton, but has a bracket mistake inside the velocity equation (bracket should include the '2')

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix-Gleason-position-error}
\begin{aligned}
  \boldsymbol{\delta} \mathbf{\dotup{p}}  &= T' \boldsymbol{\delta} \mathbf{p}^n + T \boldsymbol{\delta v}^n \\
  \boldsymbol{\delta \dotup{v}}^n         &= \highlight[purple!20]{\left[ (\mathbf{C}_b^n \boldsymbol{f}^b) \times \right]} \boldsymbol{\delta \psi}_{nb}^n
                                            \highlight[red!20]{+ \mathbf{C}_b^n} \boldsymbol{\delta f}^b
                                           - \left[ \highlight[red!60]{ 2 ( }\boldsymbol{\omega}_{ie}^n + \boldsymbol{\omega}_{en}^n) \times \right] \boldsymbol{\delta v}^n
                                           - \left[ (2 \boldsymbol{\delta \omega}_{ie}^n + \boldsymbol{\delta \omega}_{en}^n) \times \right] \boldsymbol{v}^n
                                           + \boldsymbol{\delta} \mathbf{g}^n \\
  \boldsymbol{\delta \dotup{\psi}}_{nb}^n &= \highlight[green!20]{- \left[ \boldsymbol{\omega}_{in}^n \times \right]} \boldsymbol{\delta \psi}_{nb}^n + \boldsymbol{\delta \omega}_{in}^n \highlight[orange!20]{-\mathbf{C}_b^n} \boldsymbol{\delta \omega}_{ib}^b
\end{aligned}
\end{equation}

Noureldin

Extracting the equations from [35] Noureldin, ch. 6.1.5, eq. 6.76, p. 219 gives

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix-Noureldin-Position}
  \begin{pmatrix} \delta \dotup{\phi} \\ \delta \dotup{\lambda} \\ \delta \dotup{h} \end{pmatrix}
  =
  \begin{pmatrix}
                 0              & \frac{1}{R_N+h} & 0 \\
    \frac{1}{(R_E+h)\cos{\phi}} &        0        & 0 \\
                 0              &        0        & 1 \\
  \end{pmatrix}
  \begin{pmatrix} \delta v_E \\ \delta v_N \\ \delta v_U \end{pmatrix}
\end{equation}

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix-Noureldin-Velocity}
  \begin{pmatrix} \delta \dotup{v}_{E} \\ \delta \dotup{v}_{N} \\ \delta \dotup{v}_{U} \end{pmatrix}
  =
  \begin{pmatrix}
      0  &  f_U & -f_N \\
    -f_U &   0  &  f_E \\
     f_N & -f_E &   0  \\
  \end{pmatrix}
  \begin{pmatrix} \delta P \\ \delta R \\ \delta Y \end{pmatrix}
  + \mathbf{C}_b^{enu} \boldsymbol{\delta f}^b
\end{equation}

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix-Noureldin-Attitude}
  \begin{pmatrix} \delta \dotup{P} \\ \delta \dotup{R} \\ \delta \dotup{Y} \end{pmatrix}
  =
  \begin{pmatrix}
                 0              & \frac{1}{R_N + h} & 0 \\
         -\frac{1}{R_E + h}     &         0         & 0 \\
    -\frac{\tan{\phi}}{R_E + h} &         0         & 0 \\
  \end{pmatrix}
  \begin{pmatrix} \delta v_E \\ \delta v_N \\ \delta v_U \end{pmatrix}
  + \mathbf{C}_b^{enu} \boldsymbol{\delta \omega}_{ib}^b
\end{equation}

Reordering roll/pitch and east/north gives

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix-Noureldin-Position-reordered}
  \begin{pmatrix} \delta \dotup{\phi} \\ \delta \dotup{\lambda} \\ \delta \dotup{h} \end{pmatrix}
  =
  \begin{pmatrix}
    \frac{1}{R_N+h} &              0              & 0 \\
           0        & \frac{1}{(R_E+h)\cos{\phi}} & 0 \\
           0        &              0              & 1 \\
  \end{pmatrix}
  \begin{pmatrix} \delta v_N \\ \delta v_E \\ \delta v_U \end{pmatrix}
\end{equation}

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix-Noureldin-Velocity-reordered}
  \begin{pmatrix} \delta \dotup{v}_{N} \\ \delta \dotup{v}_{E} \\ \delta \dotup{v}_{U} \end{pmatrix}
  =
  \begin{pmatrix}
      0  & -f_U &  f_E \\
     f_U &   0  & -f_N \\
    -f_E &  f_N &   0  \\
  \end{pmatrix}
  \begin{pmatrix} \delta R \\ \delta P \\ \delta Y \end{pmatrix}
  + \mathbf{C}_b^{neu} \boldsymbol{\delta f}^b
\end{equation}

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix-Noureldin-Attitude-reordered}
  \begin{pmatrix} \delta \dotup{R} \\ \delta \dotup{P} \\ \delta \dotup{Y} \end{pmatrix}
  =
  \begin{pmatrix}
            0         &      -\frac{1}{R_E + h}     & 0 \\
    \frac{1}{R_N + h} &              0              & 0 \\
            0         & -\frac{\tan{\phi}}{R_E + h} & 0 \\
  \end{pmatrix}
  \begin{pmatrix} \delta v_N \\ \delta v_E \\ \delta v_U \end{pmatrix}
  + \mathbf{C}_b^{neu} \boldsymbol{\delta \omega}_{ib}^b
\end{equation}

In [35] ch. 2.2.6.1, p. 32 Noureldin defines the yaw angle as measured counterclockwise from north which is the opposite measurement direction of the NED convention. Therefore all yaw terms have to flip the sign.

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix-Noureldin-Position-yaw-sign}
  \begin{pmatrix} \delta \dotup{\phi} \\ \delta \dotup{\lambda} \\ \delta \dotup{h} \end{pmatrix}
  =
  \begin{pmatrix}
    \frac{1}{R_N+h} &              0              & 0 \\
           0        & \frac{1}{(R_E+h)\cos{\phi}} & 0 \\
           0        &              0              & 1 \\
  \end{pmatrix}
  \begin{pmatrix} \delta v_N \\ \delta v_E \\ \delta v_U \end{pmatrix}
\end{equation}

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix-Noureldin-Velocity-yaw-sign}
  \begin{pmatrix} \delta \dotup{v}_{N} \\ \delta \dotup{v}_{E} \\ \delta \dotup{v}_{U} \end{pmatrix}
  =
  \begin{pmatrix}
      0  & -f_U & -f_E \\
     f_U &   0  &  f_N \\
    -f_E &  f_N &   0  \\
  \end{pmatrix}
  \begin{pmatrix} \delta R \\ \delta P \\ \delta Y \end{pmatrix}
  + \mathbf{C}_b^{neu} \boldsymbol{\delta f}^b
\end{equation}

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix-Noureldin-Attitude-yaw-sign}
  \begin{pmatrix} \delta \dotup{R} \\ \delta \dotup{P} \\ \delta \dotup{Y} \end{pmatrix}
  =
  \begin{pmatrix}
            0         &     -\frac{1}{R_E + h}     & 0 \\
    \frac{1}{R_N + h} &             0              & 0 \\
            0         & \frac{\tan{\phi}}{R_E + h} & 0 \\
  \end{pmatrix}
  \begin{pmatrix} \delta v_N \\ \delta v_E \\ \delta v_U \end{pmatrix}
  + \mathbf{C}_b^{neu} \boldsymbol{\delta \omega}_{ib}^b
\end{equation}

Next we replace the up component with a down component

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix-Noureldin-Position-up-down}
  \begin{pmatrix} \delta \dotup{\phi} \\ \delta \dotup{\lambda} \\ \delta \dotup{h} \end{pmatrix}
  =
  \begin{pmatrix}
    \frac{1}{R_N+h} &              0              &  0 \\
           0        & \frac{1}{(R_E+h)\cos{\phi}} &  0 \\
           0        &              0              & -1 \\
  \end{pmatrix}
  \begin{pmatrix} \delta v_N \\ \delta v_E \\ \delta v_D \end{pmatrix}
\end{equation}

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix-Noureldin-Velocity-up-down}
  \begin{pmatrix} \delta \dotup{v}_{N} \\ \delta \dotup{v}_{E} \\ \delta \dotup{v}_{D} \end{pmatrix}
  =
  \begin{pmatrix}
                0            & \highlight[red!60]{+}f_D & \highlight[red!60]{-}f_E \\
    \highlight[red!60]{-}f_D &             0            & \highlight[red!60]{+}f_N \\
    \highlight[red!60]{+}f_E & \highlight[red!60]{-}f_N &             0            \\
  \end{pmatrix}
  \begin{pmatrix} \delta R \\ \delta P \\ \delta Y \end{pmatrix}
  \highlight[red!60]{+} \mathbf{C}_b^n \boldsymbol{\delta f}^b
\end{equation}

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix-Noureldin-Attitude-up-down}
  \begin{pmatrix} \delta \dotup{R} \\ \delta \dotup{P} \\ \delta \dotup{Y} \end{pmatrix}
  =
  \begin{pmatrix}
                      0                    &     \highlight[red!60]{-}\frac{1}{R_E + h}      & 0 \\
    \highlight[red!60]{+}\frac{1}{R_N + h} &                       0                         & 0 \\
                      0                    & \highlight[red!60]{+}\frac{\tan{\phi}}{R_E + h} & 0 \\
  \end{pmatrix}
  \begin{pmatrix} \delta v_N \\ \delta v_E \\ \delta v_D \end{pmatrix}
  + \mathbf{C}_b^n \boldsymbol{\delta \omega}_{ib}^b
\end{equation}

As in [17] Groves, all signs concerning the attitude errors are now switched comparing to [47] Titterton. This leads to the same assumption, that the attitude errors are defined differently. And this can easily be shown by looking at [35] Noureldin, ch. 6.1.3, eq. 6.44, p. 212

\begin{equation} \label{eq:eq-LCKF_n-stateMatrix-Noureldin-Attitude-error-definition}
  \mathbf{\hat{C}}_b^n = (\mathbf{I} + \mathbf{\Psi}) \mathbf{C}_b^n
\end{equation}

Comparing this with equation \eqref{eq:eq-LCKF_n-Derivation-Attitude-estimate-errors} we can see that the attitude error is defined in the opposite direction.