48#include "Navigation/Transformations/Units.hpp"
60template<
typename Derived>
61Eigen::Vector3<typename Derived::Scalar>
lla2ecef(
const Eigen::MatrixBase<Derived>& lla_position,
double a,
double e_squared)
63 const typename Derived::Scalar& latitude = lla_position(0);
64 const typename Derived::Scalar& longitude = lla_position(1);
65 const typename Derived::Scalar& altitude = lla_position(2);
72 return { (R_E + altitude) * std::cos(latitude) * std::cos(longitude),
73 (R_E + altitude) * std::cos(latitude) * std::sin(longitude),
74 (R_E * (1 - e_squared) + altitude) * std::sin(latitude) };
84template<
typename Derived>
85Eigen::Vector3<typename Derived::Scalar>
ecef2lla(
const Eigen::MatrixBase<Derived>& e_position,
86 double a,
double b,
double e_squared)
88 if (e_position.isZero())
91 typename Derived::Scalar(0.0),
92 typename Derived::Scalar(0.0),
93 typename Derived::Scalar(-a)
97 const auto& x = e_position(0);
98 const auto& y = e_position(1);
99 const auto& z = e_position(2);
103 auto lon = std::atan2(y, x);
107 auto p = e_position.head(2).norm();
108 auto E = std::sqrt(a * a - b * b);
109 auto F = 54.0 * std::pow(b * z, 2.0);
110 auto G = p * p + (1.0 - e_squared) * z * z - e_squared * E * E;
111 auto c = e_squared * e_squared * F * p * p / std::pow(G, 3.0);
112 auto s = std::pow(1.0 + c + std::sqrt(c * c + 2.0 * c), 1.0 / 3.0);
113 auto P = (F / (3.0 * G * G)) / std::pow(s + (1.0 / s) + 1.0, 2.0);
114 auto Q = std::sqrt(1.0 + 2.0 * e_squared * e_squared * P);
115 auto k_1 = -P * e_squared * p / (1.0 + Q);
116 auto k_2 = 0.5 * a * a * (1.0 + 1.0 / Q);
117 auto k_3 = -P * (1.0 - e_squared) * z * z / (Q * (1.0 + Q));
118 auto k_4 = -0.5 * P * p * p;
119 auto r_0 = k_1 + std::sqrt(k_2 + k_3 + k_4);
120 auto k_5 = (p - e_squared * r_0);
121 auto U = std::sqrt(k_5 * k_5 + z * z);
122 auto V = std::sqrt(k_5 * k_5 + (1.0 - e_squared) * z * z);
124 auto alt = U * (1.0 - (b * b / (a * V)));
128 auto z_0 = (b * b * z) / (a * V);
129 auto e_p = (a / b) * std::sqrt(e_squared);
131 auto lat = std::atan((z + z_0 * (e_p * e_p)) / p);
133 return { lat, lon, alt };
140template<
typename Derived>
141[[nodiscard]] Eigen::Vector3<typename Derived::Scalar>
quat2eulerZYX(
const Eigen::QuaternionBase<Derived>& q)
144 Eigen::Vector3<typename Derived::Scalar> XYZ = q.toRotationMatrix().eulerAngles(2, 1, 0).reverse();
147 if (XYZ.y() >= M_PI / 2.0 || XYZ.y() <= -M_PI / 2.0)
149 typename Derived::Scalar x = XYZ.x() > 0 ? XYZ.x() - M_PI : XYZ.x() + M_PI;
150 typename Derived::Scalar y = XYZ.y() >= M_PI / 2.0 ? -(XYZ.y() - M_PI) : -(XYZ.y() + M_PI);
151 typename Derived::Scalar z = XYZ.z() - M_PI;
161template<
typename Derived>
162[[nodiscard]] Eigen::Matrix<typename Derived::Scalar, 4, 3>
covRPY2quatJacobian(
const Eigen::QuaternionBase<Derived>& n_quat_b)
166 if (std::abs(RPY.y()) >
typename Derived::Scalar(deg2rad(90 - 1e-9)))
168 Eigen::Quaternion<typename Derived::Scalar> n_quat2_b = n_quat_b * Eigen::AngleAxis<typename Derived::Scalar>(
typename Derived::Scalar(deg2rad(1e-8)), Eigen::Vector3<typename Derived::Scalar>::UnitY());
171 auto ccc = std::cos(RPY(0) / 2.0) * std::cos(RPY(1) / 2.0) * std::cos(RPY(2) / 2.0);
172 auto scc = std::sin(RPY(0) / 2.0) * std::cos(RPY(1) / 2.0) * std::cos(RPY(2) / 2.0);
173 auto csc = std::cos(RPY(0) / 2.0) * std::sin(RPY(1) / 2.0) * std::cos(RPY(2) / 2.0);
174 auto ccs = std::cos(RPY(0) / 2.0) * std::cos(RPY(1) / 2.0) * std::sin(RPY(2) / 2.0);
175 auto ssc = std::sin(RPY(0) / 2.0) * std::cos(RPY(1) / 2.0) * std::cos(RPY(2) / 2.0);
176 auto scs = std::sin(RPY(0) / 2.0) * std::cos(RPY(1) / 2.0) * std::sin(RPY(2) / 2.0);
177 auto css = std::cos(RPY(0) / 2.0) * std::sin(RPY(1) / 2.0) * std::sin(RPY(2) / 2.0);
178 auto sss = std::sin(RPY(0) / 2.0) * std::sin(RPY(1) / 2.0) * std::sin(RPY(2) / 2.0);
180 Eigen::Matrix<typename Derived::Scalar, 4, 3> J;
182 J << (ccc + sss) / 2.0, -(ccs + ssc) / 2.0, -(csc + scs) / 2.0,
183 (ccs - ssc) / 2.0, (ccc - sss) / 2.0, (scc - css) / 2.0,
184 -(csc + scs) / 2.0, -(css + scc) / 2.0, (ccc + sss) / 2.0,
185 (css - scc) / 2.0, (scs - csc) / 2.0, (ssc - ccs) / 2.0;
194template<
typename Derived,
typename DerivedQ>
195[[nodiscard]] Eigen::Matrix4<typename Derived::Scalar>
covRPY2quat(
const Eigen::MatrixBase<Derived>& covRPY,
const Eigen::QuaternionBase<DerivedQ>& n_quat_b)
198 return J * covRPY * J.transpose();
203template<
typename Derived>
204[[nodiscard]] Eigen::Matrix<typename Derived::Scalar, 3, 4>
covQuat2RPYJacobian(
const Eigen::QuaternionBase<Derived>& n_quat_b)
206 auto disc = n_quat_b.w() * n_quat_b.y() - n_quat_b.x() * n_quat_b.z();
207 auto a = 2.0 * std::pow(n_quat_b.y(), 2) + 2.0 * std::pow(n_quat_b.z(), 2) - 1.0;
208 auto b = 2.0 * std::pow(n_quat_b.x(), 2) + 2.0 * std::pow(n_quat_b.y(), 2) - 1.0;
209 auto c = n_quat_b.w() * n_quat_b.z() + n_quat_b.x() * n_quat_b.y();
210 auto d = n_quat_b.w() * n_quat_b.x() + n_quat_b.y() * n_quat_b.z();
211 auto e = std::pow(b, 2) + 4.0 * std::pow(d, 2);
212 auto f = std::sqrt(1.0 - 4.0 * std::pow(disc, 2));
213 auto g = std::pow(a, 2) + 4.0 * std::pow(c, 2);
215 Eigen::Matrix<typename Derived::Scalar, 3, 4> J;
217 (2.0 * (-b * n_quat_b.w() + 4.0 * d * n_quat_b.x())) / e,
218 (2.0 * (-b * n_quat_b.z() + 4.0 * d * n_quat_b.y())) / e,
219 -(2.0 * b * n_quat_b.y()) / e,
220 -(2.0 * b * n_quat_b.x()) / e,
222 -2.0 * n_quat_b.z() / f,
223 2.0 * n_quat_b.w() / f,
224 -2.0 * n_quat_b.x() / f,
225 2.0 * n_quat_b.y() / f,
227 -(2.0 * a * n_quat_b.y()) / g,
228 (2.0 * (-a * n_quat_b.x() + 4.0 * c * n_quat_b.y())) / g,
229 (2.0 * (-a * n_quat_b.w() + 4.0 * c * n_quat_b.z())) / g,
230 -(2.0 * a * n_quat_b.z()) / g;
240template<
typename Derived,
typename DerivedQ>
241[[nodiscard]] Eigen::Matrix3<typename Derived::Scalar>
covQuat2RPY(
const Eigen::MatrixBase<Derived>& covQuat,
const Eigen::QuaternionBase<DerivedQ>& n_quat_b)
244 return J * covQuat * J.transpose();
249template<
typename Derived>
250[[nodiscard]] Eigen::Matrix<typename Derived::Scalar, 4, 4>
covQuat2QuatJacobian(
const Eigen::QuaternionBase<Derived>& beta_quat_alpha)
252 Eigen::Matrix<typename Derived::Scalar, 4, 4> J;
254 beta_quat_alpha.w(), -beta_quat_alpha.z(), beta_quat_alpha.y(), beta_quat_alpha.x(),
255 beta_quat_alpha.z(), beta_quat_alpha.w(), beta_quat_alpha.x(), beta_quat_alpha.y(),
256 -beta_quat_alpha.y(), beta_quat_alpha.x(), beta_quat_alpha.w(), beta_quat_alpha.z(),
257 -beta_quat_alpha.x(), -beta_quat_alpha.y(), -beta_quat_alpha.z(), beta_quat_alpha.w();
265template<
typename Derived>
266[[nodiscard]] Eigen::Matrix<typename Derived::Scalar, 3, 4>
covQuatDiffJacobian(
const Eigen::QuaternionBase<Derived>& quat)
268 Eigen::Matrix<typename Derived::Scalar, 3, 4> J;
270 2.0 * quat.w(), -2.0 * quat.z(), 2.0 * quat.y(), -2.0 * quat.x(),
271 2.0 * quat.z(), 2.0 * quat.w(), -2.0 * quat.x(), -2.0 * quat.y(),
272 -2.0 * quat.y(), 2.0 * quat.x(), 2.0 * quat.w(), -2.0 * quat.z();
281template<
typename Scalar>
285 Eigen::AngleAxis<Scalar> zAngle(-omega_ie * time, Eigen::Vector3<Scalar>::UnitZ());
287 return Eigen::Quaternion<Scalar>(zAngle).normalized();
294template<
typename Scalar>
297 return e_Quat_i(time, omega_ie).conjugate();
304template<
typename Scalar>
305[[nodiscard]] Eigen::Quaternion<Scalar>
e_Quat_n(
const Scalar& latitude,
const Scalar& longitude)
309 Eigen::AngleAxis<Scalar> longitudeAngle(longitude, Eigen::Vector3<Scalar>::UnitZ());
310 Eigen::AngleAxis<Scalar> latitudeAngle(-M_PI_2 - latitude, Eigen::Vector3<Scalar>::UnitY());
312 return (longitudeAngle * latitudeAngle).normalized();
319template<
typename Scalar>
320[[nodiscard]] Eigen::Quaternion<Scalar>
n_Quat_e(
const Scalar& latitude,
const Scalar& longitude)
322 return e_Quat_n(latitude, longitude).conjugate();
330template<
typename Scalar>
331[[nodiscard]] Eigen::Quaternion<Scalar>
b_Quat_n(
const Scalar& roll,
const Scalar& pitch,
const Scalar& yaw)
335 Eigen::AngleAxis<Scalar> rollAngle(-roll, Eigen::Vector3<Scalar>::UnitX());
336 Eigen::AngleAxis<Scalar> pitchAngle(-pitch, Eigen::Vector3<Scalar>::UnitY());
337 Eigen::AngleAxis<Scalar> yawAngle(-yaw, Eigen::Vector3<Scalar>::UnitZ());
339 return (rollAngle * pitchAngle * yawAngle).normalized();
345template<
typename Derived>
346[[nodiscard]] Eigen::Quaternion<typename Derived::Scalar>
b_Quat_n(
const Eigen::MatrixBase<Derived>& rollPitchYaw)
348 return b_Quat_n(rollPitchYaw(0), rollPitchYaw(1), rollPitchYaw(2));
356template<
typename Scalar>
357[[nodiscard]] Eigen::Quaternion<Scalar>
n_Quat_b(Scalar roll, Scalar pitch, Scalar yaw)
359 return b_Quat_n(roll, pitch, yaw).conjugate();
365template<
typename Derived>
366[[nodiscard]] Eigen::Quaternion<typename Derived::Scalar>
n_Quat_b(
const Eigen::MatrixBase<Derived>& rollPitchYaw)
368 return n_Quat_b(rollPitchYaw(0), rollPitchYaw(1), rollPitchYaw(2));
376template<
typename Scalar>
377[[nodiscard]] Eigen::Quaternion<Scalar>
b_Quat_p(Scalar mountingAngleX, Scalar mountingAngleY, Scalar mountingAngleZ)
380 Eigen::AngleAxis<Scalar> xAngle(-mountingAngleX, Eigen::Vector3<Scalar>::UnitX());
381 Eigen::AngleAxis<Scalar> yAngle(-mountingAngleY, Eigen::Vector3<Scalar>::UnitY());
382 Eigen::AngleAxis<Scalar> zAngle(-mountingAngleZ, Eigen::Vector3<Scalar>::UnitZ());
384 return (xAngle * yAngle * zAngle).normalized();
392template<
typename Scalar>
393[[nodiscard]] Eigen::Quaternion<Scalar>
p_Quat_b(Scalar mountingAngleX, Scalar mountingAngleY, Scalar mountingAngleZ)
395 return b_Quat_p(mountingAngleX, mountingAngleY, mountingAngleZ).conjugate();
401template<
typename Derived>
402[[nodiscard]] Eigen::Vector3<typename Derived::Scalar>
lla2ecef_WGS84(
const Eigen::MatrixBase<Derived>& lla_position)
410template<
typename Derived>
411[[nodiscard]] Eigen::Vector3<typename Derived::Scalar>
lla2ecef_GRS80(
const Eigen::MatrixBase<Derived>& lla_position)
419template<
typename Derived>
420[[nodiscard]] Eigen::Vector3<typename Derived::Scalar>
ecef2lla_WGS84(
const Eigen::MatrixBase<Derived>& e_position)
431template<
typename Derived>
432[[nodiscard]] Eigen::Vector3<typename Derived::Scalar>
ecef2lla_GRS80(
const Eigen::MatrixBase<Derived>& e_position)
446template<
typename DerivedA,
typename DerivedB>
447[[nodiscard]] Eigen::Vector3<typename DerivedA::Scalar>
ecef2ned(
const Eigen::MatrixBase<DerivedA>& e_position,
const Eigen::MatrixBase<DerivedB>& lla_position_ref)
449 const auto& latitude_ref = lla_position_ref(0);
450 const auto& longitude_ref = lla_position_ref(1);
454 Eigen::Matrix3<typename DerivedA::Scalar> R_ne;
456 R_ne << -std::sin(latitude_ref) * std::cos(longitude_ref), -std::sin(latitude_ref) * std::sin(longitude_ref), std::cos(latitude_ref),
457 -std::sin(longitude_ref) , std::cos(longitude_ref) , 0 ,
458 -std::cos(latitude_ref) * std::cos(longitude_ref), -std::cos(latitude_ref) * std::sin(longitude_ref), -std::sin(latitude_ref);
461 return R_ne * (e_position - e_position_ref);
470template<
typename DerivedA,
typename DerivedB>
471[[nodiscard]] Eigen::Vector3<typename DerivedA::Scalar>
ned2ecef(
const Eigen::MatrixBase<DerivedA>& n_position,
const Eigen::MatrixBase<DerivedB>& lla_position_ref)
473 const auto& latitude_ref = lla_position_ref(0);
474 const auto& longitude_ref = lla_position_ref(1);
478 Eigen::Matrix3<typename DerivedA::Scalar> R_en;
480 R_en << -std::sin(latitude_ref) * std::cos(longitude_ref), -std::sin(longitude_ref), -std::cos(latitude_ref) * std::cos(longitude_ref),
481 -std::sin(latitude_ref) * std::sin(longitude_ref), std::cos(longitude_ref), -std::cos(latitude_ref) * std::sin(longitude_ref),
482 std::cos(latitude_ref) , 0 , -std::sin(latitude_ref) ;
485 return e_position_ref + R_en * n_position;
492template<
typename Derived>
493[[nodiscard]] Eigen::Vector3<typename Derived::Scalar>
pz90toWGS84_pos(
const Eigen::MatrixBase<Derived>& pz90_pos)
495 typename Derived::Scalar m = -0.008e-6;
496 auto omega_x =
static_cast<typename Derived::Scalar
>(-2.3_mas);
497 auto omega_y =
static_cast<typename Derived::Scalar
>(3.54_mas);
498 auto omega_z =
static_cast<typename Derived::Scalar
>(-4.21_mas);
499 Eigen::Vector3<typename Derived::Scalar> dX{ -0.013, 0.106, 0.022 };
501 Eigen::Matrix3<typename Derived::Scalar> T;
502 T << 1, -omega_z, omega_y,
503 omega_z, 1, -omega_x,
504 -omega_y, omega_x, 1;
506 return 1.0 / (1.0 + m) * T * (pz90_pos - dX);
513template<
typename DerivedA,
typename DerivedB>
514[[nodiscard]] Eigen::Vector3<typename DerivedA::Scalar>
pz90toWGS84(
const Eigen::MatrixBase<DerivedA>& pz90,
const Eigen::MatrixBase<DerivedB>& pz90_pos)
524template<
typename Derived>
525[[nodiscard]] Eigen::Vector3<typename Derived::Scalar>
sph2ecef(
const Eigen::MatrixBase<Derived>& position_s,
526 const typename Derived::Scalar& elevation,
527 const typename Derived::Scalar& azimuth)
529 Eigen::Matrix3<typename Derived::Scalar> R_se;
530 R_se << std::sin(elevation) * std::cos(azimuth), std::cos(elevation) * std::cos(azimuth), -std::sin(azimuth),
531 std::sin(elevation) * std::sin(azimuth), std::cos(elevation) * std::sin(azimuth), std::cos(azimuth),
532 std::cos(elevation), -std::sin(elevation), 0.0;
534 return R_se * position_s;
Eigen::Vector3< typename Derived::Scalar > ecef2lla(const Eigen::MatrixBase< Derived > &e_position, double a, double b, double e_squared)
Converts Earth-centered-Earth-fixed coordinates into latitude, longitude and altitude.
Definition CoordinateFrames.hpp:85
Eigen::Matrix< typename Derived::Scalar, 3, 4 > covQuatDiffJacobian(const Eigen::QuaternionBase< Derived > &quat)
Calculates the Jacobian to convert an attitude represented in quaternions into the difference of the ...
Definition CoordinateFrames.hpp:266
Eigen::Vector3< typename Derived::Scalar > ecef2lla_WGS84(const Eigen::MatrixBase< Derived > &e_position)
Converts Earth-centered-Earth-fixed coordinates into latitude, longitude and altitude using WGS84.
Definition CoordinateFrames.hpp:420
Eigen::Matrix3< typename Derived::Scalar > covQuat2RPY(const Eigen::MatrixBase< Derived > &covQuat, const Eigen::QuaternionBase< DerivedQ > &n_quat_b)
Converts a covariance for an attitude represented in quaternion form into a covariance for Euler ange...
Definition CoordinateFrames.hpp:241
Eigen::Quaternion< Scalar > i_Quat_e(Scalar time, Scalar omega_ie=InsConst::omega_ie)
Quaternion for rotations from Earth-centered-Earth-fixed to inertial frame.
Definition CoordinateFrames.hpp:295
Eigen::Matrix< typename Derived::Scalar, 4, 4 > covQuat2QuatJacobian(const Eigen::QuaternionBase< Derived > &beta_quat_alpha)
Calculates the Jacobian to convert an attitude represented in quaternions from one frame into another...
Definition CoordinateFrames.hpp:250
Eigen::Vector3< typename DerivedA::Scalar > ecef2ned(const Eigen::MatrixBase< DerivedA > &e_position, const Eigen::MatrixBase< DerivedB > &lla_position_ref)
Converts ECEF coordinates into local NED coordinates.
Definition CoordinateFrames.hpp:447
Eigen::Quaternion< Scalar > b_Quat_n(const Scalar &roll, const Scalar &pitch, const Scalar &yaw)
Quaternion for rotations from navigation to body frame.
Definition CoordinateFrames.hpp:331
Eigen::Quaternion< Scalar > e_Quat_i(Scalar time, Scalar omega_ie=InsConst::omega_ie)
Quaternion for rotations from inertial to Earth-centered-Earth-fixed frame.
Definition CoordinateFrames.hpp:282
Eigen::Vector3< typename Derived::Scalar > pz90toWGS84_pos(const Eigen::MatrixBase< Derived > &pz90_pos)
Converts PZ-90.11 coordinates to WGS84 coordinates.
Definition CoordinateFrames.hpp:493
Eigen::Vector3< typename Derived::Scalar > lla2ecef(const Eigen::MatrixBase< Derived > &lla_position, double a, double e_squared)
Converts latitude, longitude and altitude into Earth-centered-Earth-fixed coordinates.
Definition CoordinateFrames.hpp:61
Eigen::Quaternion< Scalar > b_Quat_p(Scalar mountingAngleX, Scalar mountingAngleY, Scalar mountingAngleZ)
Quaternion for rotations from platform to body frame.
Definition CoordinateFrames.hpp:377
Eigen::Vector3< typename DerivedA::Scalar > pz90toWGS84(const Eigen::MatrixBase< DerivedA > &pz90, const Eigen::MatrixBase< DerivedB > &pz90_pos)
Converts PZ-90.11 vectors to WGS84 frame.
Definition CoordinateFrames.hpp:514
Eigen::Vector3< typename Derived::Scalar > sph2ecef(const Eigen::MatrixBase< Derived > &position_s, const typename Derived::Scalar &elevation, const typename Derived::Scalar &azimuth)
Converts spherical Earth-centered-Earth-fixed coordinates into cartesian coordinates.
Definition CoordinateFrames.hpp:525
Eigen::Quaternion< Scalar > e_Quat_n(const Scalar &latitude, const Scalar &longitude)
Quaternion for rotations from navigation to Earth-fixed frame.
Definition CoordinateFrames.hpp:305
Eigen::Matrix< typename Derived::Scalar, 4, 3 > covRPY2quatJacobian(const Eigen::QuaternionBase< Derived > &n_quat_b)
Calculates the Jacobian to convert an attitude represented in Euler angels (roll, pitch,...
Definition CoordinateFrames.hpp:162
Eigen::Quaternion< Scalar > n_Quat_e(const Scalar &latitude, const Scalar &longitude)
Quaternion for rotations from Earth-fixed to navigation frame.
Definition CoordinateFrames.hpp:320
Eigen::Quaternion< Scalar > p_Quat_b(Scalar mountingAngleX, Scalar mountingAngleY, Scalar mountingAngleZ)
Quaternion for rotations from body to platform frame.
Definition CoordinateFrames.hpp:393
Eigen::Vector3< typename Derived::Scalar > quat2eulerZYX(const Eigen::QuaternionBase< Derived > &q)
Converts the quaternion to Euler rotation angles with rotation sequence ZYX.
Definition CoordinateFrames.hpp:141
Eigen::Matrix< typename Derived::Scalar, 3, 4 > covQuat2RPYJacobian(const Eigen::QuaternionBase< Derived > &n_quat_b)
Calculates the Jacobian to convert an attitude represented in quaternions into a covariance in Euler ...
Definition CoordinateFrames.hpp:204
Eigen::Vector3< typename Derived::Scalar > lla2ecef_GRS80(const Eigen::MatrixBase< Derived > &lla_position)
Converts latitude, longitude and altitude into Earth-centered-Earth-fixed coordinates using GRS90.
Definition CoordinateFrames.hpp:411
Eigen::Matrix4< typename Derived::Scalar > covRPY2quat(const Eigen::MatrixBase< Derived > &covRPY, const Eigen::QuaternionBase< DerivedQ > &n_quat_b)
Converts a covariance for an attitude represented in Euler angels (roll, pitch, yaw) into a covarianc...
Definition CoordinateFrames.hpp:195
Eigen::Vector3< typename DerivedA::Scalar > ned2ecef(const Eigen::MatrixBase< DerivedA > &n_position, const Eigen::MatrixBase< DerivedB > &lla_position_ref)
Converts local NED coordinates into ECEF coordinates.
Definition CoordinateFrames.hpp:471
Eigen::Vector3< typename Derived::Scalar > lla2ecef_WGS84(const Eigen::MatrixBase< Derived > &lla_position)
Converts latitude, longitude and altitude into Earth-centered-Earth-fixed coordinates using WGS84.
Definition CoordinateFrames.hpp:402
Eigen::Vector3< typename Derived::Scalar > ecef2lla_GRS80(const Eigen::MatrixBase< Derived > &e_position)
Converts Earth-centered-Earth-fixed coordinates into latitude, longitude and altitude using GRS90.
Definition CoordinateFrames.hpp:432
Eigen::Quaternion< Scalar > n_Quat_b(Scalar roll, Scalar pitch, Scalar yaw)
Quaternion for rotations from body to navigation frame.
Definition CoordinateFrames.hpp:357
Functions concerning the ellipsoid model.
Scalar calcEarthRadius_E(const Scalar &latitude, const Scalar &a=InsConst::WGS84::a, const Scalar &e_squared=InsConst::WGS84::e_squared)
Calculates the East/West (prime vertical) earth radius.
Definition Ellipsoid.hpp:58
Utility class for logging to console and file.
static constexpr double a
Semi-major axis = equatorial radius.
Definition Constants.hpp:73
static constexpr double b
Semi-minor axis = polar radius.
Definition Constants.hpp:77
static constexpr double e_squared
Square of the first eccentricity of the ellipsoid.
Definition Constants.hpp:79
static constexpr double b
Semi-minor axis = polar radius.
Definition Constants.hpp:54
static constexpr double a
Semi-major axis = equatorial radius.
Definition Constants.hpp:50
static constexpr double e_squared
Square of the first eccentricity of the ellipsoid.
Definition Constants.hpp:56
static constexpr double omega_ie
Nominal mean angular velocity of the Earth in [rad/s].
Definition Constants.hpp:217