0.3.0
Loading...
Searching...
No Matches
CoordinateFrames.hpp
Go to the documentation of this file.
1// This file is part of INSTINCT, the INS Toolkit for Integrated
2// Navigation Concepts and Training by the Institute of Navigation of
3// the University of Stuttgart, Germany.
4//
5// This Source Code Form is subject to the terms of the Mozilla Public
6// License, v. 2.0. If a copy of the MPL was not distributed with this
7// file, You can obtain one at https://mozilla.org/MPL/2.0/.
8
40
41#pragma once
42
43#include "util/Eigen.hpp"
44#include "util/Logger.hpp"
45
48#include "Navigation/Transformations/Units.hpp"
49
50namespace NAV::trafo
51{
52namespace internal
53{
60template<typename Derived>
61Eigen::Vector3<typename Derived::Scalar> lla2ecef(const Eigen::MatrixBase<Derived>& lla_position, double a, double e_squared)
62{
63 const typename Derived::Scalar& latitude = lla_position(0); // 𝜙 Geodetic latitude
64 const typename Derived::Scalar& longitude = lla_position(1); // λ Geodetic longitude
65 const typename Derived::Scalar& altitude = lla_position(2); // Altitude (Height above ground)
66
67 // Radius of curvature of the ellipsoid in the prime vertical plane,
68 // i.e., the plane containing the normal at P and perpendicular to the meridian (eq. 1.81)
69 auto R_E = calcEarthRadius_E(latitude, a, e_squared);
70
71 // Jekeli, 2001 (eq. 1.80) (see Torge, 1991, for further details)
72 return { (R_E + altitude) * std::cos(latitude) * std::cos(longitude),
73 (R_E + altitude) * std::cos(latitude) * std::sin(longitude),
74 (R_E * (1 - e_squared) + altitude) * std::sin(latitude) };
75}
76
84template<typename Derived>
85Eigen::Vector3<typename Derived::Scalar> ecef2lla(const Eigen::MatrixBase<Derived>& e_position,
86 double a, double b, double e_squared)
87{
88 if (e_position.isZero())
89 {
90 return {
91 typename Derived::Scalar(0.0),
92 typename Derived::Scalar(0.0),
93 typename Derived::Scalar(-a)
94 };
95 }
96
97 const auto& x = e_position(0);
98 const auto& y = e_position(1);
99 const auto& z = e_position(2);
100
101 // Calculate longitude
102
103 auto lon = std::atan2(y, x);
104
105 // Start computing intermediate variables needed to compute altitude
106
107 auto p = e_position.head(2).norm();
108 auto E = std::sqrt(a * a - b * b);
109 auto F = 54.0 * std::pow(b * z, 2.0);
110 auto G = p * p + (1.0 - e_squared) * z * z - e_squared * E * E;
111 auto c = e_squared * e_squared * F * p * p / std::pow(G, 3.0);
112 auto s = std::pow(1.0 + c + std::sqrt(c * c + 2.0 * c), 1.0 / 3.0);
113 auto P = (F / (3.0 * G * G)) / std::pow(s + (1.0 / s) + 1.0, 2.0);
114 auto Q = std::sqrt(1.0 + 2.0 * e_squared * e_squared * P);
115 auto k_1 = -P * e_squared * p / (1.0 + Q);
116 auto k_2 = 0.5 * a * a * (1.0 + 1.0 / Q);
117 auto k_3 = -P * (1.0 - e_squared) * z * z / (Q * (1.0 + Q));
118 auto k_4 = -0.5 * P * p * p;
119 auto r_0 = k_1 + std::sqrt(k_2 + k_3 + k_4);
120 auto k_5 = (p - e_squared * r_0);
121 auto U = std::sqrt(k_5 * k_5 + z * z);
122 auto V = std::sqrt(k_5 * k_5 + (1.0 - e_squared) * z * z);
123
124 auto alt = U * (1.0 - (b * b / (a * V)));
125
126 // Compute additional values required for computing latitude
127
128 auto z_0 = (b * b * z) / (a * V);
129 auto e_p = (a / b) * std::sqrt(e_squared);
130
131 auto lat = std::atan((z + z_0 * (e_p * e_p)) / p);
132
133 return { lat, lon, alt };
134}
135} // namespace internal
136
140template<typename Derived>
141[[nodiscard]] Eigen::Vector3<typename Derived::Scalar> quat2eulerZYX(const Eigen::QuaternionBase<Derived>& q)
142{
143 // Given range [-pi:pi] x [-pi:pi] x [0:pi]
144 Eigen::Vector3<typename Derived::Scalar> XYZ = q.toRotationMatrix().eulerAngles(2, 1, 0).reverse();
145
146 // Wanted range (-pi:pi] x (-pi/2:pi/2] x (-pi:pi]
147 if (XYZ.y() >= M_PI / 2.0 || XYZ.y() <= -M_PI / 2.0)
148 {
149 typename Derived::Scalar x = XYZ.x() > 0 ? XYZ.x() - M_PI : XYZ.x() + M_PI;
150 typename Derived::Scalar y = XYZ.y() >= M_PI / 2.0 ? -(XYZ.y() - M_PI) : -(XYZ.y() + M_PI);
151 typename Derived::Scalar z = XYZ.z() - M_PI;
152
153 XYZ = { x, y, z };
154 }
155
156 return XYZ;
157}
158
161template<typename Derived>
162[[nodiscard]] Eigen::Matrix<typename Derived::Scalar, 4, 3> covRPY2quatJacobian(const Eigen::QuaternionBase<Derived>& n_quat_b)
163{
164 auto RPY = trafo::quat2eulerZYX(n_quat_b);
165
166 if (std::abs(RPY.y()) > typename Derived::Scalar(deg2rad(90 - 1e-9))) // Gimbal Lock
167 {
168 Eigen::Quaternion<typename Derived::Scalar> n_quat2_b = n_quat_b * Eigen::AngleAxis<typename Derived::Scalar>(typename Derived::Scalar(deg2rad(1e-8)), Eigen::Vector3<typename Derived::Scalar>::UnitY());
169 RPY = trafo::quat2eulerZYX(n_quat2_b);
170 }
171 auto ccc = std::cos(RPY(0) / 2.0) * std::cos(RPY(1) / 2.0) * std::cos(RPY(2) / 2.0);
172 auto scc = std::sin(RPY(0) / 2.0) * std::cos(RPY(1) / 2.0) * std::cos(RPY(2) / 2.0);
173 auto csc = std::cos(RPY(0) / 2.0) * std::sin(RPY(1) / 2.0) * std::cos(RPY(2) / 2.0);
174 auto ccs = std::cos(RPY(0) / 2.0) * std::cos(RPY(1) / 2.0) * std::sin(RPY(2) / 2.0);
175 auto ssc = std::sin(RPY(0) / 2.0) * std::cos(RPY(1) / 2.0) * std::cos(RPY(2) / 2.0);
176 auto scs = std::sin(RPY(0) / 2.0) * std::cos(RPY(1) / 2.0) * std::sin(RPY(2) / 2.0);
177 auto css = std::cos(RPY(0) / 2.0) * std::sin(RPY(1) / 2.0) * std::sin(RPY(2) / 2.0);
178 auto sss = std::sin(RPY(0) / 2.0) * std::sin(RPY(1) / 2.0) * std::sin(RPY(2) / 2.0);
179
180 Eigen::Matrix<typename Derived::Scalar, 4, 3> J;
181 // clang-format off
182 J << (ccc + sss) / 2.0, -(ccs + ssc) / 2.0, -(csc + scs) / 2.0,
183 (ccs - ssc) / 2.0, (ccc - sss) / 2.0, (scc - css) / 2.0,
184 -(csc + scs) / 2.0, -(css + scc) / 2.0, (ccc + sss) / 2.0,
185 (css - scc) / 2.0, (scs - csc) / 2.0, (ssc - ccs) / 2.0;
186 // clang-format on
187 return J;
188}
189
194template<typename Derived, typename DerivedQ>
195[[nodiscard]] Eigen::Matrix4<typename Derived::Scalar> covRPY2quat(const Eigen::MatrixBase<Derived>& covRPY, const Eigen::QuaternionBase<DerivedQ>& n_quat_b)
196{
197 auto J = covRPY2quatJacobian(n_quat_b);
198 return J * covRPY * J.transpose();
199}
200
203template<typename Derived>
204[[nodiscard]] Eigen::Matrix<typename Derived::Scalar, 3, 4> covQuat2RPYJacobian(const Eigen::QuaternionBase<Derived>& n_quat_b)
205{
206 auto disc = n_quat_b.w() * n_quat_b.y() - n_quat_b.x() * n_quat_b.z();
207 auto a = 2.0 * std::pow(n_quat_b.y(), 2) + 2.0 * std::pow(n_quat_b.z(), 2) - 1.0;
208 auto b = 2.0 * std::pow(n_quat_b.x(), 2) + 2.0 * std::pow(n_quat_b.y(), 2) - 1.0;
209 auto c = n_quat_b.w() * n_quat_b.z() + n_quat_b.x() * n_quat_b.y();
210 auto d = n_quat_b.w() * n_quat_b.x() + n_quat_b.y() * n_quat_b.z();
211 auto e = std::pow(b, 2) + 4.0 * std::pow(d, 2);
212 auto f = std::sqrt(1.0 - 4.0 * std::pow(disc, 2));
213 auto g = std::pow(a, 2) + 4.0 * std::pow(c, 2);
214
215 Eigen::Matrix<typename Derived::Scalar, 3, 4> J;
216 J << // clang-format off
217 (2.0 * (-b * n_quat_b.w() + 4.0 * d * n_quat_b.x())) / e,
218 (2.0 * (-b * n_quat_b.z() + 4.0 * d * n_quat_b.y())) / e,
219 -(2.0 * b * n_quat_b.y()) / e,
220 -(2.0 * b * n_quat_b.x()) / e,
221
222 -2.0 * n_quat_b.z() / f,
223 2.0 * n_quat_b.w() / f,
224 -2.0 * n_quat_b.x() / f,
225 2.0 * n_quat_b.y() / f,
226
227 -(2.0 * a * n_quat_b.y()) / g,
228 (2.0 * (-a * n_quat_b.x() + 4.0 * c * n_quat_b.y())) / g,
229 (2.0 * (-a * n_quat_b.w() + 4.0 * c * n_quat_b.z())) / g,
230 -(2.0 * a * n_quat_b.z()) / g;
231 // clang-format on
232
233 return J;
234}
235
240template<typename Derived, typename DerivedQ>
241[[nodiscard]] Eigen::Matrix3<typename Derived::Scalar> covQuat2RPY(const Eigen::MatrixBase<Derived>& covQuat, const Eigen::QuaternionBase<DerivedQ>& n_quat_b)
242{
243 auto J = covQuat2RPYJacobian(n_quat_b);
244 return J * covQuat * J.transpose();
245}
246
249template<typename Derived>
250[[nodiscard]] Eigen::Matrix<typename Derived::Scalar, 4, 4> covQuat2QuatJacobian(const Eigen::QuaternionBase<Derived>& beta_quat_alpha)
251{
252 Eigen::Matrix<typename Derived::Scalar, 4, 4> J;
253 J << // clang-format off
254 beta_quat_alpha.w(), -beta_quat_alpha.z(), beta_quat_alpha.y(), beta_quat_alpha.x(),
255 beta_quat_alpha.z(), beta_quat_alpha.w(), beta_quat_alpha.x(), beta_quat_alpha.y(),
256 -beta_quat_alpha.y(), beta_quat_alpha.x(), beta_quat_alpha.w(), beta_quat_alpha.z(),
257 -beta_quat_alpha.x(), -beta_quat_alpha.y(), -beta_quat_alpha.z(), beta_quat_alpha.w();
258 // clang-format on
259
260 return J;
261}
262
265template<typename Derived>
266[[nodiscard]] Eigen::Matrix<typename Derived::Scalar, 3, 4> covQuatDiffJacobian(const Eigen::QuaternionBase<Derived>& quat)
267{
268 Eigen::Matrix<typename Derived::Scalar, 3, 4> J;
269 J << // clang-format off
270 2.0 * quat.w(), -2.0 * quat.z(), 2.0 * quat.y(), -2.0 * quat.x(),
271 2.0 * quat.z(), 2.0 * quat.w(), -2.0 * quat.x(), -2.0 * quat.y(),
272 -2.0 * quat.y(), 2.0 * quat.x(), 2.0 * quat.w(), -2.0 * quat.z();
273 // clang-format on
274 return J;
275}
276
281template<typename Scalar>
282[[nodiscard]] Eigen::Quaternion<Scalar> e_Quat_i(Scalar time, Scalar omega_ie = InsConst::omega_ie)
283{
284 // Initialize angle-axis rotation from an angle in radian and an axis which must be normalized.
285 Eigen::AngleAxis<Scalar> zAngle(-omega_ie * time, Eigen::Vector3<Scalar>::UnitZ());
286
287 return Eigen::Quaternion<Scalar>(zAngle).normalized();
288}
289
294template<typename Scalar>
295[[nodiscard]] Eigen::Quaternion<Scalar> i_Quat_e(Scalar time, Scalar omega_ie = InsConst::omega_ie)
296{
297 return e_Quat_i(time, omega_ie).conjugate();
298}
299
304template<typename Scalar>
305[[nodiscard]] Eigen::Quaternion<Scalar> e_Quat_n(const Scalar& latitude, const Scalar& longitude)
306{
307 // Initialize angle-axis rotation from an angle in radian and an axis which must be normalized.
308 // Eigen uses here a different sign convention as the physical system.
309 Eigen::AngleAxis<Scalar> longitudeAngle(longitude, Eigen::Vector3<Scalar>::UnitZ());
310 Eigen::AngleAxis<Scalar> latitudeAngle(-M_PI_2 - latitude, Eigen::Vector3<Scalar>::UnitY());
311
312 return (longitudeAngle * latitudeAngle).normalized();
313}
314
319template<typename Scalar>
320[[nodiscard]] Eigen::Quaternion<Scalar> n_Quat_e(const Scalar& latitude, const Scalar& longitude)
321{
322 return e_Quat_n(latitude, longitude).conjugate();
323}
324
330template<typename Scalar>
331[[nodiscard]] Eigen::Quaternion<Scalar> b_Quat_n(const Scalar& roll, const Scalar& pitch, const Scalar& yaw)
332{
333 // Initialize angle-axis rotation from an angle in radian and an axis which must be normalized.
334 // Eigen uses here a different sign convention as the physical system.
335 Eigen::AngleAxis<Scalar> rollAngle(-roll, Eigen::Vector3<Scalar>::UnitX());
336 Eigen::AngleAxis<Scalar> pitchAngle(-pitch, Eigen::Vector3<Scalar>::UnitY());
337 Eigen::AngleAxis<Scalar> yawAngle(-yaw, Eigen::Vector3<Scalar>::UnitZ());
338
339 return (rollAngle * pitchAngle * yawAngle).normalized();
340}
341
345template<typename Derived>
346[[nodiscard]] Eigen::Quaternion<typename Derived::Scalar> b_Quat_n(const Eigen::MatrixBase<Derived>& rollPitchYaw)
347{
348 return b_Quat_n(rollPitchYaw(0), rollPitchYaw(1), rollPitchYaw(2));
349}
350
356template<typename Scalar>
357[[nodiscard]] Eigen::Quaternion<Scalar> n_Quat_b(Scalar roll, Scalar pitch, Scalar yaw)
358{
359 return b_Quat_n(roll, pitch, yaw).conjugate();
360}
361
365template<typename Derived>
366[[nodiscard]] Eigen::Quaternion<typename Derived::Scalar> n_Quat_b(const Eigen::MatrixBase<Derived>& rollPitchYaw)
367{
368 return n_Quat_b(rollPitchYaw(0), rollPitchYaw(1), rollPitchYaw(2));
369}
370
376template<typename Scalar>
377[[nodiscard]] Eigen::Quaternion<Scalar> b_Quat_p(Scalar mountingAngleX, Scalar mountingAngleY, Scalar mountingAngleZ)
378{
379 // Initialize angle-axis rotation from an angle in radian and an axis which must be normalized.
380 Eigen::AngleAxis<Scalar> xAngle(-mountingAngleX, Eigen::Vector3<Scalar>::UnitX());
381 Eigen::AngleAxis<Scalar> yAngle(-mountingAngleY, Eigen::Vector3<Scalar>::UnitY());
382 Eigen::AngleAxis<Scalar> zAngle(-mountingAngleZ, Eigen::Vector3<Scalar>::UnitZ());
383
384 return (xAngle * yAngle * zAngle).normalized();
385}
386
392template<typename Scalar>
393[[nodiscard]] Eigen::Quaternion<Scalar> p_Quat_b(Scalar mountingAngleX, Scalar mountingAngleY, Scalar mountingAngleZ)
394{
395 return b_Quat_p(mountingAngleX, mountingAngleY, mountingAngleZ).conjugate();
396}
397
401template<typename Derived>
402[[nodiscard]] Eigen::Vector3<typename Derived::Scalar> lla2ecef_WGS84(const Eigen::MatrixBase<Derived>& lla_position)
403{
405}
406
410template<typename Derived>
411[[nodiscard]] Eigen::Vector3<typename Derived::Scalar> lla2ecef_GRS80(const Eigen::MatrixBase<Derived>& lla_position)
412{
414}
415
419template<typename Derived>
420[[nodiscard]] Eigen::Vector3<typename Derived::Scalar> ecef2lla_WGS84(const Eigen::MatrixBase<Derived>& e_position)
421{
422 return internal::ecef2lla(e_position,
426}
427
431template<typename Derived>
432[[nodiscard]] Eigen::Vector3<typename Derived::Scalar> ecef2lla_GRS80(const Eigen::MatrixBase<Derived>& e_position)
433{
434 return internal::ecef2lla(e_position,
438}
439
446template<typename DerivedA, typename DerivedB>
447[[nodiscard]] Eigen::Vector3<typename DerivedA::Scalar> ecef2ned(const Eigen::MatrixBase<DerivedA>& e_position, const Eigen::MatrixBase<DerivedB>& lla_position_ref)
448{
449 const auto& latitude_ref = lla_position_ref(0); // 𝜙 Geodetic latitude
450 const auto& longitude_ref = lla_position_ref(1); // λ Geodetic longitude
451
452 auto e_position_ref = lla2ecef_WGS84(lla_position_ref);
453
454 Eigen::Matrix3<typename DerivedA::Scalar> R_ne;
455 // clang-format off
456 R_ne << -std::sin(latitude_ref) * std::cos(longitude_ref), -std::sin(latitude_ref) * std::sin(longitude_ref), std::cos(latitude_ref),
457 -std::sin(longitude_ref) , std::cos(longitude_ref) , 0 ,
458 -std::cos(latitude_ref) * std::cos(longitude_ref), -std::cos(latitude_ref) * std::sin(longitude_ref), -std::sin(latitude_ref);
459 // clang-format on
460
461 return R_ne * (e_position - e_position_ref);
462}
463
470template<typename DerivedA, typename DerivedB>
471[[nodiscard]] Eigen::Vector3<typename DerivedA::Scalar> ned2ecef(const Eigen::MatrixBase<DerivedA>& n_position, const Eigen::MatrixBase<DerivedB>& lla_position_ref)
472{
473 const auto& latitude_ref = lla_position_ref(0); // 𝜙 Geodetic latitude
474 const auto& longitude_ref = lla_position_ref(1); // λ Geodetic longitude
475
476 auto e_position_ref = lla2ecef_WGS84(lla_position_ref);
477
478 Eigen::Matrix3<typename DerivedA::Scalar> R_en;
479 // clang-format off
480 R_en << -std::sin(latitude_ref) * std::cos(longitude_ref), -std::sin(longitude_ref), -std::cos(latitude_ref) * std::cos(longitude_ref),
481 -std::sin(latitude_ref) * std::sin(longitude_ref), std::cos(longitude_ref), -std::cos(latitude_ref) * std::sin(longitude_ref),
482 std::cos(latitude_ref) , 0 , -std::sin(latitude_ref) ;
483 // clang-format on
484
485 return e_position_ref + R_en * n_position;
486}
487
492template<typename Derived>
493[[nodiscard]] Eigen::Vector3<typename Derived::Scalar> pz90toWGS84_pos(const Eigen::MatrixBase<Derived>& pz90_pos)
494{
495 typename Derived::Scalar m = -0.008e-6;
496 auto omega_x = static_cast<typename Derived::Scalar>(-2.3_mas);
497 auto omega_y = static_cast<typename Derived::Scalar>(3.54_mas);
498 auto omega_z = static_cast<typename Derived::Scalar>(-4.21_mas);
499 Eigen::Vector3<typename Derived::Scalar> dX{ -0.013, 0.106, 0.022 };
500
501 Eigen::Matrix3<typename Derived::Scalar> T;
502 T << 1, -omega_z, omega_y,
503 omega_z, 1, -omega_x,
504 -omega_y, omega_x, 1;
505
506 return 1.0 / (1.0 + m) * T * (pz90_pos - dX);
507}
508
513template<typename DerivedA, typename DerivedB>
514[[nodiscard]] Eigen::Vector3<typename DerivedA::Scalar> pz90toWGS84(const Eigen::MatrixBase<DerivedA>& pz90, const Eigen::MatrixBase<DerivedB>& pz90_pos)
515{
516 return pz90toWGS84_pos(pz90_pos + pz90) - pz90toWGS84_pos(pz90_pos);
517}
518
524template<typename Derived>
525[[nodiscard]] Eigen::Vector3<typename Derived::Scalar> sph2ecef(const Eigen::MatrixBase<Derived>& position_s,
526 const typename Derived::Scalar& elevation,
527 const typename Derived::Scalar& azimuth)
528{
529 Eigen::Matrix3<typename Derived::Scalar> R_se;
530 R_se << std::sin(elevation) * std::cos(azimuth), std::cos(elevation) * std::cos(azimuth), -std::sin(azimuth),
531 std::sin(elevation) * std::sin(azimuth), std::cos(elevation) * std::sin(azimuth), std::cos(azimuth),
532 std::cos(elevation), -std::sin(elevation), 0.0;
533
534 return R_se * position_s;
535}
536
537} // namespace NAV::trafo
Holds all Constants.
Eigen::Vector3< typename Derived::Scalar > ecef2lla(const Eigen::MatrixBase< Derived > &e_position, double a, double b, double e_squared)
Converts Earth-centered-Earth-fixed coordinates into latitude, longitude and altitude.
Definition CoordinateFrames.hpp:85
Eigen::Matrix< typename Derived::Scalar, 3, 4 > covQuatDiffJacobian(const Eigen::QuaternionBase< Derived > &quat)
Calculates the Jacobian to convert an attitude represented in quaternions into the difference of the ...
Definition CoordinateFrames.hpp:266
Eigen::Vector3< typename Derived::Scalar > ecef2lla_WGS84(const Eigen::MatrixBase< Derived > &e_position)
Converts Earth-centered-Earth-fixed coordinates into latitude, longitude and altitude using WGS84.
Definition CoordinateFrames.hpp:420
Eigen::Matrix3< typename Derived::Scalar > covQuat2RPY(const Eigen::MatrixBase< Derived > &covQuat, const Eigen::QuaternionBase< DerivedQ > &n_quat_b)
Converts a covariance for an attitude represented in quaternion form into a covariance for Euler ange...
Definition CoordinateFrames.hpp:241
Eigen::Quaternion< Scalar > i_Quat_e(Scalar time, Scalar omega_ie=InsConst::omega_ie)
Quaternion for rotations from Earth-centered-Earth-fixed to inertial frame.
Definition CoordinateFrames.hpp:295
Eigen::Matrix< typename Derived::Scalar, 4, 4 > covQuat2QuatJacobian(const Eigen::QuaternionBase< Derived > &beta_quat_alpha)
Calculates the Jacobian to convert an attitude represented in quaternions from one frame into another...
Definition CoordinateFrames.hpp:250
Eigen::Vector3< typename DerivedA::Scalar > ecef2ned(const Eigen::MatrixBase< DerivedA > &e_position, const Eigen::MatrixBase< DerivedB > &lla_position_ref)
Converts ECEF coordinates into local NED coordinates.
Definition CoordinateFrames.hpp:447
Eigen::Quaternion< Scalar > b_Quat_n(const Scalar &roll, const Scalar &pitch, const Scalar &yaw)
Quaternion for rotations from navigation to body frame.
Definition CoordinateFrames.hpp:331
Eigen::Quaternion< Scalar > e_Quat_i(Scalar time, Scalar omega_ie=InsConst::omega_ie)
Quaternion for rotations from inertial to Earth-centered-Earth-fixed frame.
Definition CoordinateFrames.hpp:282
Eigen::Vector3< typename Derived::Scalar > pz90toWGS84_pos(const Eigen::MatrixBase< Derived > &pz90_pos)
Converts PZ-90.11 coordinates to WGS84 coordinates.
Definition CoordinateFrames.hpp:493
Eigen::Vector3< typename Derived::Scalar > lla2ecef(const Eigen::MatrixBase< Derived > &lla_position, double a, double e_squared)
Converts latitude, longitude and altitude into Earth-centered-Earth-fixed coordinates.
Definition CoordinateFrames.hpp:61
Eigen::Quaternion< Scalar > b_Quat_p(Scalar mountingAngleX, Scalar mountingAngleY, Scalar mountingAngleZ)
Quaternion for rotations from platform to body frame.
Definition CoordinateFrames.hpp:377
Eigen::Vector3< typename DerivedA::Scalar > pz90toWGS84(const Eigen::MatrixBase< DerivedA > &pz90, const Eigen::MatrixBase< DerivedB > &pz90_pos)
Converts PZ-90.11 vectors to WGS84 frame.
Definition CoordinateFrames.hpp:514
Eigen::Vector3< typename Derived::Scalar > sph2ecef(const Eigen::MatrixBase< Derived > &position_s, const typename Derived::Scalar &elevation, const typename Derived::Scalar &azimuth)
Converts spherical Earth-centered-Earth-fixed coordinates into cartesian coordinates.
Definition CoordinateFrames.hpp:525
Eigen::Quaternion< Scalar > e_Quat_n(const Scalar &latitude, const Scalar &longitude)
Quaternion for rotations from navigation to Earth-fixed frame.
Definition CoordinateFrames.hpp:305
Eigen::Matrix< typename Derived::Scalar, 4, 3 > covRPY2quatJacobian(const Eigen::QuaternionBase< Derived > &n_quat_b)
Calculates the Jacobian to convert an attitude represented in Euler angels (roll, pitch,...
Definition CoordinateFrames.hpp:162
Eigen::Quaternion< Scalar > n_Quat_e(const Scalar &latitude, const Scalar &longitude)
Quaternion for rotations from Earth-fixed to navigation frame.
Definition CoordinateFrames.hpp:320
Eigen::Quaternion< Scalar > p_Quat_b(Scalar mountingAngleX, Scalar mountingAngleY, Scalar mountingAngleZ)
Quaternion for rotations from body to platform frame.
Definition CoordinateFrames.hpp:393
Eigen::Vector3< typename Derived::Scalar > quat2eulerZYX(const Eigen::QuaternionBase< Derived > &q)
Converts the quaternion to Euler rotation angles with rotation sequence ZYX.
Definition CoordinateFrames.hpp:141
Eigen::Matrix< typename Derived::Scalar, 3, 4 > covQuat2RPYJacobian(const Eigen::QuaternionBase< Derived > &n_quat_b)
Calculates the Jacobian to convert an attitude represented in quaternions into a covariance in Euler ...
Definition CoordinateFrames.hpp:204
Eigen::Vector3< typename Derived::Scalar > lla2ecef_GRS80(const Eigen::MatrixBase< Derived > &lla_position)
Converts latitude, longitude and altitude into Earth-centered-Earth-fixed coordinates using GRS90.
Definition CoordinateFrames.hpp:411
Eigen::Matrix4< typename Derived::Scalar > covRPY2quat(const Eigen::MatrixBase< Derived > &covRPY, const Eigen::QuaternionBase< DerivedQ > &n_quat_b)
Converts a covariance for an attitude represented in Euler angels (roll, pitch, yaw) into a covarianc...
Definition CoordinateFrames.hpp:195
Eigen::Vector3< typename DerivedA::Scalar > ned2ecef(const Eigen::MatrixBase< DerivedA > &n_position, const Eigen::MatrixBase< DerivedB > &lla_position_ref)
Converts local NED coordinates into ECEF coordinates.
Definition CoordinateFrames.hpp:471
Eigen::Vector3< typename Derived::Scalar > lla2ecef_WGS84(const Eigen::MatrixBase< Derived > &lla_position)
Converts latitude, longitude and altitude into Earth-centered-Earth-fixed coordinates using WGS84.
Definition CoordinateFrames.hpp:402
Eigen::Vector3< typename Derived::Scalar > ecef2lla_GRS80(const Eigen::MatrixBase< Derived > &e_position)
Converts Earth-centered-Earth-fixed coordinates into latitude, longitude and altitude using GRS90.
Definition CoordinateFrames.hpp:432
Eigen::Quaternion< Scalar > n_Quat_b(Scalar roll, Scalar pitch, Scalar yaw)
Quaternion for rotations from body to navigation frame.
Definition CoordinateFrames.hpp:357
Vector space operations.
Functions concerning the ellipsoid model.
Scalar calcEarthRadius_E(const Scalar &latitude, const Scalar &a=InsConst::WGS84::a, const Scalar &e_squared=InsConst::WGS84::e_squared)
Calculates the East/West (prime vertical) earth radius.
Definition Ellipsoid.hpp:58
Utility class for logging to console and file.
static constexpr double a
Semi-major axis = equatorial radius.
Definition Constants.hpp:73
static constexpr double b
Semi-minor axis = polar radius.
Definition Constants.hpp:77
static constexpr double e_squared
Square of the first eccentricity of the ellipsoid.
Definition Constants.hpp:79
static constexpr double b
Semi-minor axis = polar radius.
Definition Constants.hpp:54
static constexpr double a
Semi-major axis = equatorial radius.
Definition Constants.hpp:50
static constexpr double e_squared
Square of the first eccentricity of the ellipsoid.
Definition Constants.hpp:56
static constexpr double omega_ie
Nominal mean angular velocity of the Earth in [rad/s].
Definition Constants.hpp:217