0.5.1
Loading...
Searching...
No Matches
CoordinateFrames.hpp
Go to the documentation of this file.
1// This file is part of INSTINCT, the INS Toolkit for Integrated
2// Navigation Concepts and Training by the Institute of Navigation of
3// the University of Stuttgart, Germany.
4//
5// This Source Code Form is subject to the terms of the Mozilla Public
6// License, v. 2.0. If a copy of the MPL was not distributed with this
7// file, You can obtain one at https://mozilla.org/MPL/2.0/.
8
9/// @file CoordinateFrames.hpp
10/// @brief Transformation collection
11/// @author T. Topp (topp@ins.uni-stuttgart.de)
12/// @date 2020-09-08
13///
14/// Coordinate Frames:
15/// - Inertial frame (i-frame)
16/// O_i: Earth center
17/// x_i: Direction to Vernal equinox
18/// y_i: In equatorial plane, complementing to Right-Hand-System
19/// z_i: Vertical on equatorial plane (North)
20/// - Earth-centered-Earth-fixed frame (e-frame)
21/// O_e: Earth center of mass
22/// x_e: Direction to Greenwich meridian (longitude = 0掳)
23/// y_e: In equatorial plane, complementing to Right-Hand-System
24/// z_e: Vertical on equatorial plane (North)
25/// - Local Navigation frame (n-frame)
26/// O_n: Vehicle center of mass
27/// x_n: "North"
28/// y_n: Right-Hand-System ("East")
29/// z_n: Earth center ("Down")
30/// - Body frame (b-frame)
31/// O_b: Vehicle center of mass
32/// x_b: Roll-axis ("Forward")
33/// y_b: Pitch-axis ("Right")
34/// z_b: Yaw-axis ("Down")
35/// - Platform frame (p-frame)
36/// O_b: Center of IMU
37/// x_b: X-Axis Accelerometer/Gyrometer
38/// y_b: Y-Axis Accelerometer/Gyrometer
39/// z_b: Z-Axis Accelerometer/Gyrometer
40
41#pragma once
42
43#include "util/Eigen.hpp"
44#include "util/Logger.hpp"
45
49
50namespace NAV::trafo
51{
52namespace internal
53{
54/// @brief Converts latitude, longitude and altitude into Earth-centered-Earth-fixed coordinates
55/// @param[in] lla_position [饾湙 latitude, 位 longitude, altitude]^T in [rad, rad, m]
56/// @param[in] a Semi-major axis of the reference ellipsoid
57/// @param[in] e_squared Square of the first eccentricity of the ellipsoid
58/// @return The ECEF coordinates in [m]
59/// @note See C. Jekeli, 2001, Inertial Navigation Systems with Geodetic Applications. pp. 23
60template<typename Derived>
61Eigen::Vector3<typename Derived::Scalar> lla2ecef(const Eigen::MatrixBase<Derived>& lla_position, double a, double e_squared)
62{
63 const typename Derived::Scalar& latitude = lla_position(0); // 饾湙 Geodetic latitude
64 const typename Derived::Scalar& longitude = lla_position(1); // 位 Geodetic longitude
65 const typename Derived::Scalar& altitude = lla_position(2); // Altitude (Height above ground)
66
67 // Radius of curvature of the ellipsoid in the prime vertical plane,
68 // i.e., the plane containing the normal at P and perpendicular to the meridian (eq. 1.81)
69 auto R_E = calcEarthRadius_E(latitude, a, e_squared);
70
71 // Jekeli, 2001 (eq. 1.80) (see Torge, 1991, for further details)
72 return { (R_E + altitude) * std::cos(latitude) * std::cos(longitude),
73 (R_E + altitude) * std::cos(latitude) * std::sin(longitude),
74 (R_E * (1 - e_squared) + altitude) * std::sin(latitude) };
75}
76
77/// @brief Converts Earth-centered-Earth-fixed coordinates into latitude, longitude and altitude
78/// @param[in] e_position Vector with coordinates in ECEF frame in [m]
79/// @param[in] a Semi-major axis of the reference ellipsoid
80/// @param[in] b Semi-minor axis of the reference ellipsoid
81/// @param[in] e_squared Square of the first eccentricity of the ellipsoid
82/// @return Vector containing [latitude 饾湙, longitude 位, altitude]^T in [rad, rad, m]
83/// @note See See S. Gleason (2009) - GNSS Applications and Methods: Software example 'Chapter6_GNSS_INS_1/wgsxyz2lla.m' (J.A. Farrel and M. Barth, 1999, GPS & Inertal Navigation. McGraw-Hill. pp. 29.)
84template<typename Derived>
85Eigen::Vector3<typename Derived::Scalar> ecef2lla(const Eigen::MatrixBase<Derived>& e_position,
86 double a, double b, double e_squared)
87{
88 if (e_position.isZero())
89 {
90 return {
91 typename Derived::Scalar(0.0),
92 typename Derived::Scalar(0.0),
93 typename Derived::Scalar(-a)
94 };
95 }
96
97 const auto& x = e_position(0);
98 const auto& y = e_position(1);
99 const auto& z = e_position(2);
100
101 // Calculate longitude
102
103 auto lon = std::atan2(y, x);
104
105 // Start computing intermediate variables needed to compute altitude
106
107 auto p = e_position.head(2).norm();
108 auto E = std::sqrt(a * a - b * b);
109 auto F = 54.0 * std::pow(b * z, 2.0);
110 auto G = p * p + (1.0 - e_squared) * z * z - e_squared * E * E;
111 auto c = e_squared * e_squared * F * p * p / std::pow(G, 3.0);
112 auto s = std::pow(1.0 + c + std::sqrt(c * c + 2.0 * c), 1.0 / 3.0);
113 auto P = (F / (3.0 * G * G)) / std::pow(s + (1.0 / s) + 1.0, 2.0);
114 auto Q = std::sqrt(1.0 + 2.0 * e_squared * e_squared * P);
115 auto k_1 = -P * e_squared * p / (1.0 + Q);
116 auto k_2 = 0.5 * a * a * (1.0 + 1.0 / Q);
117 auto k_3 = -P * (1.0 - e_squared) * z * z / (Q * (1.0 + Q));
118 auto k_4 = -0.5 * P * p * p;
119 auto r_0 = k_1 + std::sqrt(k_2 + k_3 + k_4);
120 auto k_5 = (p - e_squared * r_0);
121 auto U = std::sqrt(k_5 * k_5 + z * z);
122 auto V = std::sqrt(k_5 * k_5 + (1.0 - e_squared) * z * z);
123
124 auto alt = U * (1.0 - (b * b / (a * V)));
125
126 // Compute additional values required for computing latitude
127
128 auto z_0 = (b * b * z) / (a * V);
129 auto e_p = (a / b) * std::sqrt(e_squared);
130
131 auto lat = std::atan((z + z_0 * (e_p * e_p)) / p);
132
133 return { lat, lon, alt };
134}
135} // namespace internal
136
137/// @brief Converts the quaternion to Euler rotation angles with rotation sequence ZYX
138/// @param[in] q Quaternion to convert
139/// @return [angleX, angleY, angleZ]^T vector in [rad]. The returned angles are in the ranges (-pi:pi] x (-pi/2:pi/2] x (-pi:pi]
140template<typename Derived>
141[[nodiscard]] Eigen::Vector3<typename Derived::Scalar> quat2eulerZYX(const Eigen::QuaternionBase<Derived>& q)
142{
143 // Given range [-pi:pi] x [-pi:pi] x [0:pi]
144 Eigen::Vector3<typename Derived::Scalar> XYZ = q.toRotationMatrix().eulerAngles(2, 1, 0).reverse();
145
146 // Wanted range (-pi:pi] x (-pi/2:pi/2] x (-pi:pi]
147 if (XYZ.y() >= M_PI / 2.0 || XYZ.y() <= -M_PI / 2.0)
148 {
149 typename Derived::Scalar x = XYZ.x() > 0 ? XYZ.x() - M_PI : XYZ.x() + M_PI;
150 typename Derived::Scalar y = XYZ.y() >= M_PI / 2.0 ? -(XYZ.y() - M_PI) : -(XYZ.y() + M_PI);
151 typename Derived::Scalar z = XYZ.z() - M_PI;
152
153 XYZ = { x, y, z };
154 }
155
156 return XYZ;
157
158 // TODO: When Eigen 5.0.0 is usable (conflict with ceres 2.2.0)
159 // For Tait-Bryan angle configurations (a0 != a2), the returned angles are in the ranges [-pi:pi]x[-pi/2:pi/2]x[-pi:pi].
160 // return q.toRotationMatrix().canonicalEulerAngles(2, 1, 0).reverse();
161}
162
163/// @brief Calculates the Jacobian to convert an attitude represented in Euler angels (roll, pitch, yaw) into a covariance for a quaternion
164/// @param n_quat_b Quaternion for rotations from body to navigation frame
165template<typename Derived>
166[[nodiscard]] Eigen::Matrix<typename Derived::Scalar, 4, 3> covRPY2quatJacobian(const Eigen::QuaternionBase<Derived>& n_quat_b)
167{
168 auto RPY = trafo::quat2eulerZYX(n_quat_b);
169
170 if (std::abs(RPY.y()) > typename Derived::Scalar(deg2rad(90 - 1e-9))) // Gimbal Lock
171 {
172 Eigen::Quaternion<typename Derived::Scalar> n_quat2_b = n_quat_b * Eigen::AngleAxis<typename Derived::Scalar>(typename Derived::Scalar(deg2rad(1e-8)), Eigen::Vector3<typename Derived::Scalar>::UnitY());
173 RPY = trafo::quat2eulerZYX(n_quat2_b);
174 }
175 auto ccc = std::cos(RPY(0) / 2.0) * std::cos(RPY(1) / 2.0) * std::cos(RPY(2) / 2.0);
176 auto scc = std::sin(RPY(0) / 2.0) * std::cos(RPY(1) / 2.0) * std::cos(RPY(2) / 2.0);
177 auto csc = std::cos(RPY(0) / 2.0) * std::sin(RPY(1) / 2.0) * std::cos(RPY(2) / 2.0);
178 auto ccs = std::cos(RPY(0) / 2.0) * std::cos(RPY(1) / 2.0) * std::sin(RPY(2) / 2.0);
179 auto ssc = std::sin(RPY(0) / 2.0) * std::cos(RPY(1) / 2.0) * std::cos(RPY(2) / 2.0);
180 auto scs = std::sin(RPY(0) / 2.0) * std::cos(RPY(1) / 2.0) * std::sin(RPY(2) / 2.0);
181 auto css = std::cos(RPY(0) / 2.0) * std::sin(RPY(1) / 2.0) * std::sin(RPY(2) / 2.0);
182 auto sss = std::sin(RPY(0) / 2.0) * std::sin(RPY(1) / 2.0) * std::sin(RPY(2) / 2.0);
183
184 Eigen::Matrix<typename Derived::Scalar, 4, 3> J;
185 // clang-format off
186 J << (ccc + sss) / 2.0, -(ccs + ssc) / 2.0, -(csc + scs) / 2.0,
187 (ccs - ssc) / 2.0, (ccc - sss) / 2.0, (scc - css) / 2.0,
188 -(csc + scs) / 2.0, -(css + scc) / 2.0, (ccc + sss) / 2.0,
189 (css - scc) / 2.0, (scs - csc) / 2.0, (ssc - ccs) / 2.0;
190 // clang-format on
191 return J;
192}
193
194/// @brief Converts a covariance for an attitude represented in Euler angels (roll, pitch, yaw) into a covariance for a quaternion
195/// @param covRPY Covariance for the Euler angles
196/// @param n_quat_b Quaternion for rotations from body to navigation frame
197/// @return Covariance for the quaternion
198template<typename Derived, typename DerivedQ>
199[[nodiscard]] Eigen::Matrix4<typename Derived::Scalar> covRPY2quat(const Eigen::MatrixBase<Derived>& covRPY, const Eigen::QuaternionBase<DerivedQ>& n_quat_b)
200{
201 auto J = covRPY2quatJacobian(n_quat_b);
202 return J * covRPY * J.transpose();
203}
204
205/// @brief Calculates the Jacobian to convert an attitude represented in quaternions into a covariance in Euler angels (roll, pitch, yaw)
206/// @param n_quat_b Quaternion for rotations from body to navigation frame
207template<typename Derived>
208[[nodiscard]] Eigen::Matrix<typename Derived::Scalar, 3, 4> covQuat2RPYJacobian(const Eigen::QuaternionBase<Derived>& n_quat_b)
209{
210 auto disc = n_quat_b.w() * n_quat_b.y() - n_quat_b.x() * n_quat_b.z();
211 auto a = 2.0 * std::pow(n_quat_b.y(), 2) + 2.0 * std::pow(n_quat_b.z(), 2) - 1.0;
212 auto b = 2.0 * std::pow(n_quat_b.x(), 2) + 2.0 * std::pow(n_quat_b.y(), 2) - 1.0;
213 auto c = n_quat_b.w() * n_quat_b.z() + n_quat_b.x() * n_quat_b.y();
214 auto d = n_quat_b.w() * n_quat_b.x() + n_quat_b.y() * n_quat_b.z();
215 auto e = std::pow(b, 2) + 4.0 * std::pow(d, 2);
216 auto f = std::sqrt(1.0 - 4.0 * std::pow(disc, 2));
217 auto g = std::pow(a, 2) + 4.0 * std::pow(c, 2);
218
219 Eigen::Matrix<typename Derived::Scalar, 3, 4> J;
220 J << // clang-format off
221 (2.0 * (-b * n_quat_b.w() + 4.0 * d * n_quat_b.x())) / e,
222 (2.0 * (-b * n_quat_b.z() + 4.0 * d * n_quat_b.y())) / e,
223 -(2.0 * b * n_quat_b.y()) / e,
224 -(2.0 * b * n_quat_b.x()) / e,
225
226 -2.0 * n_quat_b.z() / f,
227 2.0 * n_quat_b.w() / f,
228 -2.0 * n_quat_b.x() / f,
229 2.0 * n_quat_b.y() / f,
230
231 -(2.0 * a * n_quat_b.y()) / g,
232 (2.0 * (-a * n_quat_b.x() + 4.0 * c * n_quat_b.y())) / g,
233 (2.0 * (-a * n_quat_b.w() + 4.0 * c * n_quat_b.z())) / g,
234 -(2.0 * a * n_quat_b.z()) / g;
235 // clang-format on
236
237 return J;
238}
239
240/// @brief Converts a covariance for an attitude represented in quaternion form into a covariance for Euler angels (yaw, pitch, roll)
241/// @param covQuat Covariance for the quaternion
242/// @param n_quat_b Quaternion for rotations from body to navigation frame
243/// @return Covariance for the Euler angels (roll, pitch, yaw)
244template<typename Derived, typename DerivedQ>
245[[nodiscard]] Eigen::Matrix3<typename Derived::Scalar> covQuat2RPY(const Eigen::MatrixBase<Derived>& covQuat, const Eigen::QuaternionBase<DerivedQ>& n_quat_b)
246{
247 auto J = covQuat2RPYJacobian(n_quat_b);
248 return J * covQuat * J.transpose();
249}
250
251/// @brief Calculates the Jacobian to convert an attitude represented in quaternions from one frame into another. Multiply: cov_beta = J * cov_alpha * J^T
252/// @param beta_quat_alpha Quaternion for rotations from frame alpha to frame beta. e.g. n_q_e if converting e_cov_b to n_cov_b
253template<typename Derived>
254[[nodiscard]] Eigen::Matrix<typename Derived::Scalar, 4, 4> covQuat2QuatJacobian(const Eigen::QuaternionBase<Derived>& beta_quat_alpha)
255{
256 Eigen::Matrix<typename Derived::Scalar, 4, 4> J;
257 J << // clang-format off
258 beta_quat_alpha.w(), -beta_quat_alpha.z(), beta_quat_alpha.y(), beta_quat_alpha.x(),
259 beta_quat_alpha.z(), beta_quat_alpha.w(), beta_quat_alpha.x(), beta_quat_alpha.y(),
260 -beta_quat_alpha.y(), beta_quat_alpha.x(), beta_quat_alpha.w(), beta_quat_alpha.z(),
261 -beta_quat_alpha.x(), -beta_quat_alpha.y(), -beta_quat_alpha.z(), beta_quat_alpha.w();
262 // clang-format on
263
264 return J;
265}
266
267/// @brief Calculates the Jacobian to convert an attitude represented in quaternions into the difference of the vector part of two quaternions
268/// @param quat Quaternion for which the Jacobian is wanted
269template<typename Derived>
270[[nodiscard]] Eigen::Matrix<typename Derived::Scalar, 3, 4> covQuatDiffJacobian(const Eigen::QuaternionBase<Derived>& quat)
271{
272 Eigen::Matrix<typename Derived::Scalar, 3, 4> J;
273 J << // clang-format off
274 2.0 * quat.w(), -2.0 * quat.z(), 2.0 * quat.y(), -2.0 * quat.x(),
275 2.0 * quat.z(), 2.0 * quat.w(), -2.0 * quat.x(), -2.0 * quat.y(),
276 -2.0 * quat.y(), 2.0 * quat.x(), 2.0 * quat.w(), -2.0 * quat.z();
277 // clang-format on
278 return J;
279}
280
281/// @brief Quaternion for rotations from inertial to Earth-centered-Earth-fixed frame
282/// @param[in] time Time (t - t0)
283/// @param[in] omega_ie Angular velocity in [rad/s] of earth frame with regard to the inertial frame
284/// @return The rotation Quaternion representation
285template<typename Scalar>
286[[nodiscard]] Eigen::Quaternion<Scalar> e_Quat_i(Scalar time, Scalar omega_ie = InsConst::omega_ie)
287{
288 // Initialize angle-axis rotation from an angle in radian and an axis which must be normalized.
289 Eigen::AngleAxis<Scalar> zAngle(-omega_ie * time, Eigen::Vector3<Scalar>::UnitZ());
290
291 return Eigen::Quaternion<Scalar>(zAngle).normalized();
292}
293
294/// @brief Quaternion for rotations from Earth-centered-Earth-fixed to inertial frame
295/// @param[in] time Time (t - t0)
296/// @param[in] omega_ie Angular velocity in [rad/s] of earth frame with regard to the inertial frame
297/// @return The rotation Quaternion representation
298template<typename Scalar>
299[[nodiscard]] Eigen::Quaternion<Scalar> i_Quat_e(Scalar time, Scalar omega_ie = InsConst::omega_ie)
300{
301 return e_Quat_i(time, omega_ie).conjugate();
302}
303
304/// @brief Quaternion for rotations from navigation to Earth-fixed frame
305/// @param[in] latitude 饾湙 Geodetic latitude in [rad]
306/// @param[in] longitude 位 Geodetic longitude in [rad]
307/// @return The rotation Quaternion representation
308template<typename Scalar>
309[[nodiscard]] Eigen::Quaternion<Scalar> e_Quat_n(const Scalar& latitude, const Scalar& longitude)
310{
311 // Initialize angle-axis rotation from an angle in radian and an axis which must be normalized.
312 // Eigen uses here a different sign convention as the physical system.
313 Eigen::AngleAxis<Scalar> longitudeAngle(longitude, Eigen::Vector3<Scalar>::UnitZ());
314 Eigen::AngleAxis<Scalar> latitudeAngle(-M_PI_2 - latitude, Eigen::Vector3<Scalar>::UnitY());
315
316 return (longitudeAngle * latitudeAngle).normalized();
317}
318
319/// @brief Quaternion for rotations from Earth-fixed to navigation frame
320/// @param[in] latitude 饾湙 Geodetic latitude in [rad]
321/// @param[in] longitude 位 Geodetic longitude in [rad]
322/// @return The rotation Quaternion representation
323template<typename Scalar>
324[[nodiscard]] Eigen::Quaternion<Scalar> n_Quat_e(const Scalar& latitude, const Scalar& longitude)
325{
326 return e_Quat_n(latitude, longitude).conjugate();
327}
328
329/// @brief Quaternion for rotations from navigation to body frame
330/// @param[in] roll Roll angle in [rad]
331/// @param[in] pitch Pitch angle in [rad]
332/// @param[in] yaw Yaw angle in [rad]
333/// @return The rotation Quaternion representation
334template<typename Scalar>
335[[nodiscard]] Eigen::Quaternion<Scalar> b_Quat_n(const Scalar& roll, const Scalar& pitch, const Scalar& yaw)
336{
337 // Initialize angle-axis rotation from an angle in radian and an axis which must be normalized.
338 // Eigen uses here a different sign convention as the physical system.
339 Eigen::AngleAxis<Scalar> rollAngle(-roll, Eigen::Vector3<Scalar>::UnitX());
340 Eigen::AngleAxis<Scalar> pitchAngle(-pitch, Eigen::Vector3<Scalar>::UnitY());
341 Eigen::AngleAxis<Scalar> yawAngle(-yaw, Eigen::Vector3<Scalar>::UnitZ());
342
343 return (rollAngle * pitchAngle * yawAngle).normalized();
344}
345
346/// @brief Quaternion for rotations from navigation to body frame
347/// @param[in] rollPitchYaw Roll, Pitch, Yaw angle in [rad]
348/// @return The rotation Quaternion representation
349template<typename Derived>
350[[nodiscard]] Eigen::Quaternion<typename Derived::Scalar> b_Quat_n(const Eigen::MatrixBase<Derived>& rollPitchYaw)
351{
352 return b_Quat_n(rollPitchYaw(0), rollPitchYaw(1), rollPitchYaw(2));
353}
354
355/// @brief Quaternion for rotations from body to navigation frame
356/// @param[in] roll Roll angle in [rad]
357/// @param[in] pitch Pitch angle in [rad]
358/// @param[in] yaw Yaw angle in [rad]
359/// @return The rotation Quaternion representation
360template<typename Scalar>
361[[nodiscard]] Eigen::Quaternion<Scalar> n_Quat_b(Scalar roll, Scalar pitch, Scalar yaw)
362{
363 return b_Quat_n(roll, pitch, yaw).conjugate();
364}
365
366/// @brief Quaternion for rotations from body to navigation frame
367/// @param[in] rollPitchYaw Roll, Pitch, Yaw angle in [rad]
368/// @return The rotation Quaternion representation
369template<typename Derived>
370[[nodiscard]] Eigen::Quaternion<typename Derived::Scalar> n_Quat_b(const Eigen::MatrixBase<Derived>& rollPitchYaw)
371{
372 return n_Quat_b(rollPitchYaw(0), rollPitchYaw(1), rollPitchYaw(2));
373}
374
375/// @brief Quaternion for rotations from platform to body frame
376/// @param[in] mountingAngleX Mounting angle to x axis in [rad]. First rotation. (-pi:pi]
377/// @param[in] mountingAngleY Mounting angle to y axis in [rad]. Second rotation. (-pi/2:pi/2]
378/// @param[in] mountingAngleZ Mounting angle to z axis in [rad]. Third rotation. (-pi:pi]
379/// @return The rotation Quaternion representation
380template<typename Scalar>
381[[nodiscard]] Eigen::Quaternion<Scalar> b_Quat_p(Scalar mountingAngleX, Scalar mountingAngleY, Scalar mountingAngleZ)
382{
383 // Initialize angle-axis rotation from an angle in radian and an axis which must be normalized.
384 Eigen::AngleAxis<Scalar> xAngle(-mountingAngleX, Eigen::Vector3<Scalar>::UnitX());
385 Eigen::AngleAxis<Scalar> yAngle(-mountingAngleY, Eigen::Vector3<Scalar>::UnitY());
386 Eigen::AngleAxis<Scalar> zAngle(-mountingAngleZ, Eigen::Vector3<Scalar>::UnitZ());
387
388 return (xAngle * yAngle * zAngle).normalized();
389}
390
391/// @brief Quaternion for rotations from body to platform frame
392/// @param[in] mountingAngleX Mounting angle to x axis in [rad]. First rotation. (-pi:pi]
393/// @param[in] mountingAngleY Mounting angle to y axis in [rad]. Second rotation. (-pi/2:pi/2]
394/// @param[in] mountingAngleZ Mounting angle to z axis in [rad]. Third rotation. (-pi:pi]
395/// @return The rotation Quaternion representation
396template<typename Scalar>
397[[nodiscard]] Eigen::Quaternion<Scalar> p_Quat_b(Scalar mountingAngleX, Scalar mountingAngleY, Scalar mountingAngleZ)
398{
399 return b_Quat_p(mountingAngleX, mountingAngleY, mountingAngleZ).conjugate();
400}
401
402/// @brief Converts latitude, longitude and altitude into Earth-centered-Earth-fixed coordinates using WGS84
403/// @param[in] lla_position [饾湙 latitude, 位 longitude, altitude]^T in [rad, rad, m]
404/// @return The ECEF coordinates in [m]
405template<typename Derived>
406[[nodiscard]] Eigen::Vector3<typename Derived::Scalar> lla2ecef_WGS84(const Eigen::MatrixBase<Derived>& lla_position)
407{
409}
410
411/// @brief Converts latitude, longitude and altitude into Earth-centered-Earth-fixed coordinates using GRS90
412/// @param[in] lla_position [饾湙 latitude, 位 longitude, altitude]^T in [rad, rad, m]
413/// @return The ECEF coordinates in [m]
414template<typename Derived>
415[[nodiscard]] Eigen::Vector3<typename Derived::Scalar> lla2ecef_GRS80(const Eigen::MatrixBase<Derived>& lla_position)
416{
418}
419
420/// @brief Converts Earth-centered-Earth-fixed coordinates into latitude, longitude and altitude using WGS84
421/// @param[in] e_position Vector with coordinates in ECEF frame
422/// @return Vector containing [latitude 饾湙, longitude 位, altitude]^T in [rad, rad, m]
423template<typename Derived>
424[[nodiscard]] Eigen::Vector3<typename Derived::Scalar> ecef2lla_WGS84(const Eigen::MatrixBase<Derived>& e_position)
425{
426 return internal::ecef2lla(e_position,
430}
431
432/// @brief Converts Earth-centered-Earth-fixed coordinates into latitude, longitude and altitude using GRS90
433/// @param[in] e_position Vector with coordinates in ECEF frame in [m]
434/// @return Vector containing [latitude 饾湙, longitude 位, altitude]^T in [rad, rad, m]
435template<typename Derived>
436[[nodiscard]] Eigen::Vector3<typename Derived::Scalar> ecef2lla_GRS80(const Eigen::MatrixBase<Derived>& e_position)
437{
438 return internal::ecef2lla(e_position,
442}
443
444/// @brief Converts ECEF coordinates into local NED coordinates
445/// @param[in] e_position ECEF coordinates in [m] to convert
446/// @param[in] lla_position_ref Reference [饾湙 latitude, 位 longitude, altitude]^T in [rad, rad, m] which represents the origin of the local frame
447/// @return [x_N, x_E, x_D]^T Local NED coordinates in [m]
448/// @note See G. Cai, B.M. Chen, Lee, T.H. Lee, 2011, Unmanned Rotorcraft Systems. Springer. pp. 32
449/// @attention This function does not take the sphericity of the Earth into account
450template<typename DerivedA, typename DerivedB>
451[[nodiscard]] Eigen::Vector3<typename DerivedA::Scalar> ecef2ned(const Eigen::MatrixBase<DerivedA>& e_position, const Eigen::MatrixBase<DerivedB>& lla_position_ref)
452{
453 const auto& latitude_ref = lla_position_ref(0); // 饾湙 Geodetic latitude
454 const auto& longitude_ref = lla_position_ref(1); // 位 Geodetic longitude
455
456 auto e_position_ref = lla2ecef_WGS84(lla_position_ref);
457
458 Eigen::Matrix3<typename DerivedA::Scalar> R_ne;
459 // clang-format off
460 R_ne << -std::sin(latitude_ref) * std::cos(longitude_ref), -std::sin(latitude_ref) * std::sin(longitude_ref), std::cos(latitude_ref),
461 -std::sin(longitude_ref) , std::cos(longitude_ref) , 0 ,
462 -std::cos(latitude_ref) * std::cos(longitude_ref), -std::cos(latitude_ref) * std::sin(longitude_ref), -std::sin(latitude_ref);
463 // clang-format on
464
465 return R_ne * (e_position - e_position_ref);
466}
467
468/// @brief Converts local NED coordinates into ECEF coordinates
469/// @param[in] n_position NED coordinates in [m] to convert
470/// @param[in] lla_position_ref Reference [饾湙 latitude, 位 longitude, altitude]^T in [rad, rad, m] which represents the origin of the local frame
471/// @return ECEF position in [m]
472/// @note See G. Cai, B.M. Chen, Lee, T.H. Lee, 2011, Unmanned Rotorcraft Systems. Springer. pp. 32
473/// @attention This function does not take the sphericity of the Earth into account
474template<typename DerivedA, typename DerivedB>
475[[nodiscard]] Eigen::Vector3<typename DerivedA::Scalar> ned2ecef(const Eigen::MatrixBase<DerivedA>& n_position, const Eigen::MatrixBase<DerivedB>& lla_position_ref)
476{
477 const auto& latitude_ref = lla_position_ref(0); // 饾湙 Geodetic latitude
478 const auto& longitude_ref = lla_position_ref(1); // 位 Geodetic longitude
479
480 auto e_position_ref = lla2ecef_WGS84(lla_position_ref);
481
482 Eigen::Matrix3<typename DerivedA::Scalar> R_en;
483 // clang-format off
484 R_en << -std::sin(latitude_ref) * std::cos(longitude_ref), -std::sin(longitude_ref), -std::cos(latitude_ref) * std::cos(longitude_ref),
485 -std::sin(latitude_ref) * std::sin(longitude_ref), std::cos(longitude_ref), -std::cos(latitude_ref) * std::sin(longitude_ref),
486 std::cos(latitude_ref) , 0 , -std::sin(latitude_ref) ;
487 // clang-format on
488
489 return e_position_ref + R_en * n_position;
490}
491
492/// @brief Converts PZ-90.11 coordinates to WGS84 coordinates
493/// @param[in] pz90_pos Position in PZ-90.11 coordinates
494/// @return Position in WGS84 coordinates
495/// @note See \cite PZ-90.11 PZ-90.11 Reference Document Appendix 4, p.34f
496template<typename Derived>
497[[nodiscard]] Eigen::Vector3<typename Derived::Scalar> pz90toWGS84_pos(const Eigen::MatrixBase<Derived>& pz90_pos)
498{
499 typename Derived::Scalar m = -0.008e-6;
500 auto omega_x = static_cast<typename Derived::Scalar>(-2.3_mas);
501 auto omega_y = static_cast<typename Derived::Scalar>(3.54_mas);
502 auto omega_z = static_cast<typename Derived::Scalar>(-4.21_mas);
503 Eigen::Vector3<typename Derived::Scalar> dX{ -0.013, 0.106, 0.022 };
504
505 Eigen::Matrix3<typename Derived::Scalar> T;
506 T << 1, -omega_z, omega_y,
507 omega_z, 1, -omega_x,
508 -omega_y, omega_x, 1;
509
510 return 1.0 / (1.0 + m) * T * (pz90_pos - dX);
511}
512
513/// @brief Converts PZ-90.11 vectors to WGS84 frame
514/// @param[in] pz90 Vector in PZ-90.11 frame
515/// @param[in] pz90_pos Position in PZ-90.11 frame (needed for calculation)
516/// @return Vector in WGS84 frame
517template<typename DerivedA, typename DerivedB>
518[[nodiscard]] Eigen::Vector3<typename DerivedA::Scalar> pz90toWGS84(const Eigen::MatrixBase<DerivedA>& pz90, const Eigen::MatrixBase<DerivedB>& pz90_pos)
519{
520 return pz90toWGS84_pos(pz90_pos + pz90) - pz90toWGS84_pos(pz90_pos);
521}
522
523/// @brief Converts spherical Earth-centered-Earth-fixed coordinates into cartesian coordinates
524/// @param[in] position_s Position in spherical coordinates to convert
525/// @param[in] elevation Elevation in [rad]
526/// @param[in] azimuth Azimuth in [rad]
527/// @return The ECEF coordinates in [m]
528template<typename Derived>
529[[nodiscard]] Eigen::Vector3<typename Derived::Scalar> sph2ecef(const Eigen::MatrixBase<Derived>& position_s,
530 const typename Derived::Scalar& elevation,
531 const typename Derived::Scalar& azimuth)
532{
533 Eigen::Matrix3<typename Derived::Scalar> R_se;
534 R_se << std::sin(elevation) * std::cos(azimuth), std::cos(elevation) * std::cos(azimuth), -std::sin(azimuth),
535 std::sin(elevation) * std::sin(azimuth), std::cos(elevation) * std::sin(azimuth), std::cos(azimuth),
536 std::cos(elevation), -std::sin(elevation), 0.0;
537
538 return R_se * position_s;
539}
540
541} // namespace NAV::trafo
Holds all Constants.
Vector space operations.
Functions concerning the ellipsoid model.
Utility class for logging to console and file.
static constexpr double a
Semi-major axis = equatorial radius.
Definition Constants.hpp:73
static constexpr double b
Semi-minor axis = polar radius.
Definition Constants.hpp:77
static constexpr double e_squared
Square of the first eccentricity of the ellipsoid.
Definition Constants.hpp:79
static constexpr double b
Semi-minor axis = polar radius.
Definition Constants.hpp:54
static constexpr double a
Semi-major axis = equatorial radius.
Definition Constants.hpp:50
static constexpr double e_squared
Square of the first eccentricity of the ellipsoid.
Definition Constants.hpp:56
static constexpr double omega_ie
Nominal mean angular velocity of the Earth in [rad/s].
Eigen::Vector3< typename Derived::Scalar > ecef2lla(const Eigen::MatrixBase< Derived > &e_position, double a, double b, double e_squared)
Converts Earth-centered-Earth-fixed coordinates into latitude, longitude and altitude.
Eigen::Vector3< typename Derived::Scalar > lla2ecef(const Eigen::MatrixBase< Derived > &lla_position, double a, double e_squared)
Converts latitude, longitude and altitude into Earth-centered-Earth-fixed coordinates.
Eigen::Matrix< typename Derived::Scalar, 3, 4 > covQuatDiffJacobian(const Eigen::QuaternionBase< Derived > &quat)
Calculates the Jacobian to convert an attitude represented in quaternions into the difference of the ...
Eigen::Vector3< typename Derived::Scalar > ecef2lla_WGS84(const Eigen::MatrixBase< Derived > &e_position)
Converts Earth-centered-Earth-fixed coordinates into latitude, longitude and altitude using WGS84.
Eigen::Matrix3< typename Derived::Scalar > covQuat2RPY(const Eigen::MatrixBase< Derived > &covQuat, const Eigen::QuaternionBase< DerivedQ > &n_quat_b)
Converts a covariance for an attitude represented in quaternion form into a covariance for Euler ange...
Eigen::Quaternion< Scalar > i_Quat_e(Scalar time, Scalar omega_ie=InsConst::omega_ie)
Quaternion for rotations from Earth-centered-Earth-fixed to inertial frame.
Eigen::Matrix< typename Derived::Scalar, 4, 4 > covQuat2QuatJacobian(const Eigen::QuaternionBase< Derived > &beta_quat_alpha)
Calculates the Jacobian to convert an attitude represented in quaternions from one frame into another...
Eigen::Vector3< typename DerivedA::Scalar > ecef2ned(const Eigen::MatrixBase< DerivedA > &e_position, const Eigen::MatrixBase< DerivedB > &lla_position_ref)
Converts ECEF coordinates into local NED coordinates.
Eigen::Quaternion< Scalar > b_Quat_n(const Scalar &roll, const Scalar &pitch, const Scalar &yaw)
Quaternion for rotations from navigation to body frame.
Eigen::Quaternion< Scalar > e_Quat_i(Scalar time, Scalar omega_ie=InsConst::omega_ie)
Quaternion for rotations from inertial to Earth-centered-Earth-fixed frame.
Eigen::Vector3< typename Derived::Scalar > pz90toWGS84_pos(const Eigen::MatrixBase< Derived > &pz90_pos)
Converts PZ-90.11 coordinates to WGS84 coordinates.
Eigen::Quaternion< Scalar > b_Quat_p(Scalar mountingAngleX, Scalar mountingAngleY, Scalar mountingAngleZ)
Quaternion for rotations from platform to body frame.
Eigen::Vector3< typename DerivedA::Scalar > pz90toWGS84(const Eigen::MatrixBase< DerivedA > &pz90, const Eigen::MatrixBase< DerivedB > &pz90_pos)
Converts PZ-90.11 vectors to WGS84 frame.
Eigen::Vector3< typename Derived::Scalar > sph2ecef(const Eigen::MatrixBase< Derived > &position_s, const typename Derived::Scalar &elevation, const typename Derived::Scalar &azimuth)
Converts spherical Earth-centered-Earth-fixed coordinates into cartesian coordinates.
Eigen::Quaternion< Scalar > e_Quat_n(const Scalar &latitude, const Scalar &longitude)
Quaternion for rotations from navigation to Earth-fixed frame.
Eigen::Matrix< typename Derived::Scalar, 4, 3 > covRPY2quatJacobian(const Eigen::QuaternionBase< Derived > &n_quat_b)
Calculates the Jacobian to convert an attitude represented in Euler angels (roll, pitch,...
Eigen::Quaternion< Scalar > n_Quat_e(const Scalar &latitude, const Scalar &longitude)
Quaternion for rotations from Earth-fixed to navigation frame.
Eigen::Quaternion< Scalar > p_Quat_b(Scalar mountingAngleX, Scalar mountingAngleY, Scalar mountingAngleZ)
Quaternion for rotations from body to platform frame.
Eigen::Vector3< typename Derived::Scalar > quat2eulerZYX(const Eigen::QuaternionBase< Derived > &q)
Converts the quaternion to Euler rotation angles with rotation sequence ZYX.
Eigen::Matrix< typename Derived::Scalar, 3, 4 > covQuat2RPYJacobian(const Eigen::QuaternionBase< Derived > &n_quat_b)
Calculates the Jacobian to convert an attitude represented in quaternions into a covariance in Euler ...
Eigen::Vector3< typename Derived::Scalar > lla2ecef_GRS80(const Eigen::MatrixBase< Derived > &lla_position)
Converts latitude, longitude and altitude into Earth-centered-Earth-fixed coordinates using GRS90.
Eigen::Matrix4< typename Derived::Scalar > covRPY2quat(const Eigen::MatrixBase< Derived > &covRPY, const Eigen::QuaternionBase< DerivedQ > &n_quat_b)
Converts a covariance for an attitude represented in Euler angels (roll, pitch, yaw) into a covarianc...
Eigen::Vector3< typename DerivedA::Scalar > ned2ecef(const Eigen::MatrixBase< DerivedA > &n_position, const Eigen::MatrixBase< DerivedB > &lla_position_ref)
Converts local NED coordinates into ECEF coordinates.
Eigen::Vector3< typename Derived::Scalar > lla2ecef_WGS84(const Eigen::MatrixBase< Derived > &lla_position)
Converts latitude, longitude and altitude into Earth-centered-Earth-fixed coordinates using WGS84.
Eigen::Vector3< typename Derived::Scalar > ecef2lla_GRS80(const Eigen::MatrixBase< Derived > &e_position)
Converts Earth-centered-Earth-fixed coordinates into latitude, longitude and altitude using GRS90.
Eigen::Quaternion< Scalar > n_Quat_b(Scalar roll, Scalar pitch, Scalar yaw)
Quaternion for rotations from body to navigation frame.
constexpr auto deg2rad(const T &deg)
Convert Degree to Radians.
Definition Units.hpp:21
Scalar calcEarthRadius_E(const Scalar &latitude, const Scalar &a=InsConst::WGS84::a, const Scalar &e_squared=InsConst::WGS84::e_squared)
Calculates the East/West (prime vertical) earth radius.
Definition Ellipsoid.hpp:58