Error Equations for the ECEF frame.
More...
Go to the source code of this file.
|
Eigen::Matrix3d | NAV::e_F_df_df (const Eigen::Vector3d &beta_a) |
| Calculates the matrix 𝐅_𝛿f'_𝛿f.
|
|
Eigen::Matrix3d | NAV::e_F_dpsi_dpsi (double omega_ie) |
| Calculates the matrix 𝐅_𝜓'_𝜓
|
|
Eigen::Matrix3d | NAV::e_F_dpsi_dw (const Eigen::Matrix3d &e_Dcm_b) |
| Calculates the matrix 𝐅_𝜓'_𝛿ω
|
|
Eigen::Matrix3d | NAV::e_F_dr_dv () |
| Calculates the matrix 𝐅_𝛿r'_𝛿v.
|
|
Eigen::Matrix3d | NAV::e_F_dv_df (const Eigen::Matrix3d &e_Dcm_b) |
| Calculates the matrix 𝐅_𝜓'_𝛿f.
|
|
Eigen::Matrix3d | NAV::e_F_dv_dpsi (const Eigen::Vector3d &e_force_ib) |
| Calculates the matrix 𝐅_𝛿v'_𝜓
|
|
Eigen::Matrix3d | NAV::e_F_dv_dr (const Eigen::Vector3d &e_position, const Eigen::Vector3d &e_gravitation, double r_eS_e, const Eigen::Vector3d &e_omega_ie) |
| Calculates the matrix 𝐅_𝛿v'_𝛿r.
|
|
Eigen::Matrix3d | NAV::e_F_dv_dv (double omega_ie) |
| Calculates the matrix 𝐅_𝛿v'_𝛿v.
|
|
Eigen::Matrix3d | NAV::e_F_dw_dw (const Eigen::Vector3d &beta_omega) |
| Calculates the matrix 𝐅_𝛿ω'_𝛿ω
|
|
Error Equations for the ECEF frame.
- Author
- T. Topp (topp@.nosp@m.ins..nosp@m.uni-s.nosp@m.tutt.nosp@m.gart..nosp@m.de)
- Date
- 2022-06-12
◆ e_F_df_df()
Eigen::Matrix3d NAV::e_F_df_df |
( |
const Eigen::Vector3d & | beta_a | ) |
|
Calculates the matrix 𝐅_𝛿f'_𝛿f.
- Parameters
-
[in] | beta_a | Gauss-Markov constant for the accelerometer 𝛽 = 1 / 𝜏 (𝜏 correlation length) |
- Returns
- 3x3 matrix in [1 / s]
- Note
- See T. Hobiger (2021) Inertialnavigation V06 - equation (6.3)
◆ e_F_dpsi_dpsi()
Eigen::Matrix3d NAV::e_F_dpsi_dpsi |
( |
double | omega_ie | ) |
|
Calculates the matrix 𝐅_𝜓'_𝜓
- Parameters
-
[in] | omega_ie | Angular velocity of the Earth in [rad/s] |
- Returns
- 3x3 matrix in [rad / s]
- Note
- See [17] Groves, ch. 14.2.3, eq. 14.48, p. 583 - 𝐅_11
◆ e_F_dpsi_dw()
Eigen::Matrix3d NAV::e_F_dpsi_dw |
( |
const Eigen::Matrix3d & | e_Dcm_b | ) |
|
Calculates the matrix 𝐅_𝜓'_𝛿ω
- Parameters
-
[in] | e_Dcm_b | DCM from body to Earth frame |
- Returns
- 3x3 matrix in [-]
- Note
- See [17] Groves, ch. 14.2.3, eq. 14.48, p. 583 - 𝐅_15
◆ e_F_dr_dv()
Eigen::Matrix3d NAV::e_F_dr_dv |
( |
| ) |
|
Calculates the matrix 𝐅_𝛿r'_𝛿v.
- Returns
- 3x3 matrix in [-]
- Note
- See [17] Groves, ch. 14.2.3, eq. 14.48, p. 583 - 𝐅_32
◆ e_F_dv_df()
Eigen::Matrix3d NAV::e_F_dv_df |
( |
const Eigen::Matrix3d & | e_Dcm_b | ) |
|
Calculates the matrix 𝐅_𝜓'_𝛿f.
- Parameters
-
[in] | e_Dcm_b | DCM from body to Earth frame |
- Returns
- 3x3 matrix in [-]
- Note
- See [17] Groves, ch. 14.2.3, eq. 14.48, p. 583 - 𝐅_24
◆ e_F_dv_dpsi()
Eigen::Matrix3d NAV::e_F_dv_dpsi |
( |
const Eigen::Vector3d & | e_force_ib | ) |
|
Calculates the matrix 𝐅_𝛿v'_𝜓
- Parameters
-
[in] | e_force_ib | Specific force of the body with respect to inertial frame in [m / s^2], resolved in Earth frame coordinates |
- Returns
- 3x3 matrix in [m / s^2]
- Note
- See [17] Groves, ch. 14.2.3, eq. 14.49, p. 584 - 𝐅_21
◆ e_F_dv_dr()
Eigen::Matrix3d NAV::e_F_dv_dr |
( |
const Eigen::Vector3d & | e_position, |
|
|
const Eigen::Vector3d & | e_gravitation, |
|
|
double | r_eS_e, |
|
|
const Eigen::Vector3d & | e_omega_ie ) |
Calculates the matrix 𝐅_𝛿v'_𝛿r.
- Parameters
-
[in] | e_position | Position in ECEF coordinates in [m] |
[in] | e_gravitation | Gravitational acceleration in [m/s^2] |
[in] | r_eS_e | Geocentric radius. The distance of a point on the Earth's surface from the center of the Earth in [m] |
[in] | e_omega_ie | Angular velocity of Earth with respect to inertial system, represented in e-sys in [rad/s] |
- Returns
- 3x3 matrix in [1 / s^2]
- Note
- See [17] Groves, ch. 14.2.3, eq. 14.49, p. 584 - 𝐅_23
◆ e_F_dv_dv()
Eigen::Matrix3d NAV::e_F_dv_dv |
( |
double | omega_ie | ) |
|
Calculates the matrix 𝐅_𝛿v'_𝛿v.
- Parameters
-
[in] | omega_ie | omega_ie Angular velocity of the Earth in [rad/s] |
- Returns
- 3x3 matrix in [1 / s]
- Note
- See [17] Groves, ch. 14.2.3, eq. 14.48, p. 583 - 𝐅_22
◆ e_F_dw_dw()
Eigen::Matrix3d NAV::e_F_dw_dw |
( |
const Eigen::Vector3d & | beta_omega | ) |
|
Calculates the matrix 𝐅_𝛿ω'_𝛿ω
- Parameters
-
[in] | beta_omega | Gauss-Markov constant for the gyroscope 𝛽 = 1 / 𝜏 (𝜏 correlation length) |
- Returns
- 3x3 matrix in [1 / s]
- Note
- See T. Hobiger (2021) Inertialnavigation V06 - equation (6.3)